Visn. Hark. nac. agrar. univ., Ser. Biol., 2021, Issue 2 (53), p. 23-40


https://doi.org/10.35550/vbio2021.02.023




USING OF HEAT SHOCK PROTEINS HSP70 FOR EVALUATION OF PLANT STATE IN NATURAL PHYTOCENSOES: APPROACHES AND PROBLEMS


L. Ye. Kozeko, E. L. Kordyum

Kholodny Institute of Botany

of the National Academy of Sciences of Ukraine

(Kyiv, Ukraine)

E-mail: liudmyla.kozeko@gmail.com


Evaluation of the plant state in a variable environment is the primary problem of plant biology and ecology in the today's realities of ecologic and climatic changes. The search for universal biomarkers that would make it possible to determine the state of plants regardless of nature of stress factors is urgent. On the basis of literature data and the results of own studies, it has been shown that heat shock proteins 70 kDa (HSP70) meet the criteria for this biomarker. This family of chaperones is present in virtually all organisms, including plants. Their induction is an indicator of cellular proteostasis disturbance and an integral component of stress response and adaptation of an organism to adverse environmental changes. The high homology of these proteins allows using monoclonal antibodies for their immunodetection in various taxa, which was demonstrated for 11 plant species of 8 families. Testing species, different in their ecology, under contrasting conditions of temperature and water regimes in nature and experiments confirmed the effectiveness of HSP70 as a biomarker. A method for determining the state of plants of natural phytocenoses and introduced plants has been developed. It includes an assessment of physiological state of a plant and influence of environmental factors on it by HSP70 content in leaves. The ways of further improvement of this approach for its use in complex research are considered.


Key words: plant state, environmental change, stress, heat shock proteins HSP70, biomarker

 


REFERENCES


1. Gamburg K.Z., Varakina N.N., Rusaleva T.M., Tauson E.L., Rikhvanov E.G., Borovskii G.B., Voinikov V.K. 2011. Comparison of the resistances of Arabidopsis (Arabidopsis thaliana) and Thellungiella (Thellungiella salsuginea) suspension cultures to high temperatures. Dokl. Biol. Sci. 439 (3) : 421-424.
https://doi.org/10.1134/S0012496611040090
 
2. Gudkova N.V., Kocakovskaya I.V., Kravets V.S., Major P.S. 2001. Effect of ionizing radiation on protein synthesis in etiolated winter wheat seedlings. Physiology and Biochemistry of Cultivated Plants. 33 (2) : 121-126. (In Russian)
 
3. Kozeko L.Ye. 2017. Heat shock protein HSP70 and al-cohol dehydrogenase synthesis in leaves of Ara-bidopsis thaliana and Sium sisaroideum in response to soil flooding. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (42) : 46-51. (In Ukrainian)
https://doi.org/10.35550/vbio2017.03.046
 
4. Kozeko L.Ye. 2014. Changes in heat-shock protein synthesis and thermotolerance of Arabidopsis thaliana seedlings resulting from Hsp90 inhibition by geldanamycin. Cell Tissue Biology. 8 (5) : 416-422.
https://doi.org/10.1134/S1990519X14050046
 
5. Kozeko L.Ye., Artemenko O.A., Zaslavsky V.A., Didukh G.Ya., Rahmetov D.B., Martynyuk G.M., Didukh Ya.P., Kordyum Ye.L. 2011. Evaluation of plant state under unfavorable changes of ecological factors using heat shock protein 70 kDa (hsp70). Ukr. Bot. J. 68 (6) : 890-900. (In Ukrainian)
 
6. Kozeko L.Ye., Ovcharenko Yu.V. 2015. Dynamics of structural and functional Sium latifolium (Apiaceae) adaptation to root flooding. Ukr. Bot. J. 72 (2): 172-179. (In Ukrainian)
https://doi.org/10.15407/ukrbotj72.02.172
 
7. Kozeko L.Ye., Rahmetov D.B. 2016. Variation in heat shock proteins HSP70 synthesis dynamics in Malva silvestris and M. pulchella (Malvaceae) in connec-tion with tolerance to high temperature, flooding and drought. Ukr. Bot. J. 73 (2) : 194-203. (In Ukrainian)
https://doi.org/10.15407/ukrbotj73.02.194
 
8. Kordyum Ye.L., Didukh Ya.P., Kozeko L.Ye., Arte-menko O.A., Zaslavsky V.A., Didukh A.Ya. 2011. Development and іntroduction of the technique for assessment of plant condition in adverse environ-ment. Science and Innovation. 7 (5) : 73-78. (In Ukrainian)
https://doi.org/10.15407/scin7.05.073
 
9. Kordyum Ye.L., Sytnik K.M., BaranenkoV.V., Belyavskaya N.A., Klymchuk D.A., Nedukha E.M. Cellular mechanisms of plant adaptation to adverse effects of ecological factors upon natural conditions. Kiev : 277 p. (In Russian)
 
10. Lysenko V.S., Varduni T.V., Soier V.G., Krasnov V.P. 2013. Plant chlorophyll fluorescence as an environ-mental stress characteristic: a theoretical basis of the method application. Fundamental research. 4 (1) : 112-120. (In Russian)
 
11. Patent for Utility Model No. 65170. Kozeko L.Ye., Kordyum Ye.L., Didukh Ya.P., Artemenko O.A., Didukh A.Ya., Zaslavsky V.A. Method for deter-mining the plant state of natural ecocenoses and in-troduced plants. 25.11.2011, Bul. No. 22.
 
12. Ananthan J., Goldberg A.L., Voellmy R. 1986. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science. 232 (4749) : 522-524.
https://doi.org/10.1126/science.3083508
 
13. Aparicio F., Thomas C.L., Lederer C., Niu Y., Wang D., Maule A.J. 2005. Virus induction of heat shock protein 70 reflects a general response to protein accumulation in the plant cytosol. Plant Physiol. 138 (1) : 529-36.
https://doi.org/10.1104/pp.104.058958
 
14. Banti V., Loreti E., Novi G., Santaniello A., Alpi A., Perata P. 2008. Heat acclimation and cross-tolerance against anoxia in Arabidopsis. Plant Cell Environ. 31 (7) : 1029-1037.
https://doi.org/10.1111/j.1365-3040.2008.01816.x
 
15. Bedulina D.S., Evgen'ev M.B., Timofeyev M.A., Pro-topopova M.V., Garbuz D.G., Pavlichenko V.V., Luckenbach T., Shatilina Z.M., Axenov-Gribanov D.V., Gurkov A.N., Sokolova I.M., Zatsepina O.G. 2013. Expression patterns and organization of the hsp70 genes correlate with thermotolerance in two congener endemic amphipod species (Eulimnogam-marus cyaneus and E. verrucosus) from Lake Baikal. Mol. Ecol. 22 : 1416-1430.
https://doi.org/10.1111/mec.12136
 
16. Bowen J., Lay-Yee M., Plummer K., Ferguson I. 2002. The heat shock response is involved in thermotoler-ance in suspension-cultured apple fruit cells. J. Plant Physiol. 159 : 599-606.
https://doi.org/10.1078/0176-1617-0752
 
17. Bray E.A. 2002. Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differen-tial expression data. Ann. Bot. 89 : 803-811.
https://doi.org/10.1093/aob/mcf104
 
18. Byth H.A., Kuun K.G., Bornman L. 2001. Virulence-dependent induction of Hsp70/Hsc70 in tomato by Ralstonia solanacearum. Plant Physiol. Biochem. 39 (7-8) : 697-705.
https://doi.org/10.1016/S0981-9428(01)01284-0
 
19. Chankova S., Yurina N. 2016. Chloroplasts heat shock protein 70B as marker of oxidative stress. In: Heat Shock Proteins and Plants. Springer, pp. 169-188.
https://doi.org/10.1007/978-3-319-46340-7_9
 
20. Chaudhary R., Baranwal V.K., Kumar R., Sircar D., Chauhan H. 2019. Genome-wide identification and expression analysis of Hsp70, Hsp90, and Hsp100 heat shock protein genes in barley under stress con-ditions and reproductive development. Funct. Integr. Genomics. 19 : 1007-1022.
https://doi.org/10.1007/s10142-019-00695-y
 
21. Chen Y., Chen X., Wang H., Bao Y., Zhang W. 2014. Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Sci. 12 : 33.
https://doi.org/10.1186/1477-5956-12-33
 
22. Chen J., Gao T., Wan S., Zhang Y., Yang J., Yu Y., Wang W. 2018. Genome-wide identification, classi-fication and expression analysis of the HSP gene su-perfamily in tea plant (Camellia sinensis). Int. J. Mol. Sci. 19 : 2633.
https://doi.org/10.3390/ijms19092633
 
23. Chen Z., Zhou T., Wu X., Hong Y., Fan Z., Li H. 2008. Influence of cytoplasmic heat shock protein 70 on viral infection of Nicotiana benthamiana. Mol. Plant Pathol. 9 : 809-817.
https://doi.org/10.1111/j.1364-3703.2008.00505.x
 
24. Cong W., Miao Y., Xu L., Zhang Y., Yuan C., Wang J., Zhuang T., Lin X., Jiang L., Wang N., Ma J., San-guinet K.A., Liu B., Rustgi S., Ou X. 2019. Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Ory-za sativa L.). BMC Plant Biol. 19 : 282.
https://doi.org/10.1186/s12870-019-1887-7
 
25. Crisp P.A., Ganguly D.R., Smith A.B., Murray K.D., Estavillo G.M., Searle I., Ford E., Bogdanović O., Lister R., Borevitz J.O., Eichten S.R., Pogson B.J. 2017. Rapid recovery gene downregulation during excess-light stress and recovery in Arabidopsis. Plant Cell. 29 (8) : 1836-1863.
https://doi.org/10.1105/tpc.16.00828
 
26. Ćuk K., Gogala M., Tkalec M., Vidaković-Cifrek Ž. 2010. Transgenerational stress memory in Arabidopsis thaliana (L.) Heynh.: antioxidative enzymes and HSP70. Acta Bot. Croat. 69 (2) : 183-197.
 
27. DeRocher A., Vierling E. 1995. Cytoplasmic HSP70 homologues of pea: differential expression in vege-tative and embryonic organs. Plant Mol. Biol. 27 : 441-456.
https://doi.org/10.1007/BF00019312
 
28. Evgen'ev M.B., Garbuz D.G., Shilova V.Y., Zatsepi-na O.G. 2007. Molecular mechanisms underlying thermal adaptation of xeric animals. J. Biosci. 32 : 489-499.
https://doi.org/10.1007/s12038-007-0048-6
 
29. Feder M.E., Hofmann G.E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evo-lutionary and ecological physiology. Annu. Rev. Physiol. 61 : 243-282.
https://doi.org/10.1146/annurev.physiol.61.1.243
 
30. Fietto L.G., Costa M.D.L., Cruz C.D., Souza A.A., Ma-chado M.A., Fontes E.P.B. 2007. Identification and in silico analysis of the Citrus HSP70 molecular chaperone gene family. Genet. Mol. Biol. 30 (3, Suppl.) : 881-887.
https://doi.org/10.1590/S1415-47572007000500017
 
31. Gao F., Zhou Y., Zhu W., Li X., Fan L., Zhang G. 2009. Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta. 230 : 1033-1046.
https://doi.org/10.1007/s00425-009-1003-6
 
32. George K.J., Malik N., Vijesh Kumar I.P., Krishna-murthy K.S. 2017. Gene expression analysis in drought tolerant and susceptible black pepper (Piper nigrum L.) in response to water deficit stress. Acta Physiol. Plant. 39 (4) : 104.
https://doi.org/10.1007/s11738-017-2398-5
 
33. Guy C.L., Li Q.B. 1998. The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell. 10 : 539-556.
https://doi.org/10.1105/tpc.10.4.539
 
34. Hlaváčková I., Vítámvás P., Santrůček J., Kosová K., Zelenková S., Prášil I.T., Ovesná J., Hynek R., Kodíček M. 2013. Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor. Int. J. Mol. Sci. 14 (4) : 8000-8024.
https://doi.org/10.3390/ijms14048000
 
35. Hu W., Hu G., Han B. 2009. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci. 176 (4) : 583-590.
https://doi.org/10.1016/j.plantsci.2009.01.016
 
36. Hu X., Liu R., Li Y., Wang W., Tai F., Xue R., Li C. 2010. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul. 60 (3) : 225-235.
https://doi.org/10.1007/s10725-009-9436-2
 
37. Hwang J.E., Hwang S.G., Kim S.H., Lee K.J., Jang C.S., Kim J.B., Kim S.H., Ha B.K., Ahn J.W., Kang S.Y., Kim D.S. 2014. Transcriptome profiling in response to different types of ionizing radiation and identification of multiple radio marker genes in rice. Physiol. Plant. 150 (4) : 604-19.
https://doi.org/10.1111/ppl.12121
 
38. Ireland H.E., Harding S.J., Bonwick G.A., Jones M., Smith C.J., Williams J.H.H. 2004. Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Biomarkers. 9 (2) : 139-155.
https://doi.org/10.1080/13547500410001732610
 
39. Jia D., Zhang B., Zhang P.P., Zhang J.Y., Liu Y.H., Wang J.S., Ma R.Y. 2015. Identification of differentially expressed genes in Alternanthera philoxerides under drought stress using suppression subtractive hybridization. Russ. J. Plant Physiol. 62 (1) : 93-100.
https://doi.org/10.1134/S1021443715010094
 
40. Jiang L., Hu W., Qian Y., Ren Q., Zhang J. 2021. Genome-wide identification, classification and expression analysis of the Hsf and Hsp70 gene families in maize. Gene. 770 : 145348.
https://doi.org/10.1016/j.gene.2020.145348
 
41. Jiang S., Lu Y., Li K., Lin L., Zheng H., Yan F., Chen J. 2014. Heat shock protein 70 is necessary for rice stripe virus infection in plants. Mol. Plant Pathol. 15 : 907-917.
https://doi.org/10.1111/mpp.12153
 
42. Jouili H., Bouazizi H., El Ferjani E. 2011. Plant peroxidases: biomarkers of metallic stress. Acta Physiol. Plant. 33 : 2075.
https://doi.org/10.1007/s11738-011-0780-2
 
43. Komatsu S., Makino T., Yasue H. 2013. Proteomic and biochemical analyses of the cotyledon and root of flooding-stressed soybean plants. PLoS ONE. 8 (6) : e65301.
https://doi.org/10.1371/journal.pone.0065301
 
44. Kordyum E.L., Dubyna D.V. 2019. Phenotypic plastici-ty in plant adaptation and coexistence. Int. J. Adv. Res. Bot. 5 (3) : 8-13
https://doi.org/10.20431/2455-4316.0503002
 
45. Kosova K., Vitamvas P., Planchon S., Renaut J., Vankova R., Prasil I.T. 2013. Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and diferences in regulatory processes between the growth habits. J. Proteome Res. 12 : 4830-4845.
https://doi.org/10.1021/pr400600g
 
46. Kozeko L. 2021. Different roles of inducible and constitutive HSP70 and HSP90 in tolerance of Arabidopsis thaliana to high temperature and water deficit. Acta Physiol. Plant. 43 : 58.
https://doi.org/10.1007/s11738-021-03229-x
 
47. Kozeko L., Kordyum E. 2009. Effect of hypergravity on the level of heat shock proteins 70 and 90 in pea seedlings. Microgravity Sci. Technology. 21 (1) : 175-178.
https://doi.org/10.1007/s12217-008-9044-1
 
48. Kozeko L., Talalaiev O., Neimash V., Povarchuk V. 2015. A protective role of HSP90 chaperone in gamma-irradiated Arabidopsis thaliana seeds. Life Sci. Space Res. 6 : 51-58.
https://doi.org/10.1016/j.lssr.2015.07.002
 
49. Kovalchuk I., Kovalchuk O. 2008. Transgenic plants as sensors of environmental pollution genotoxicity. Sensors. 8 : 1539-1558.
https://doi.org/10.3390/s8031539
 
50. Kubienová L., Sedlářová M., Wünschová A., Piterko-vá J., Luhová L., Mieslerová B., Lebeda A., Navrátil M., Petřivalský M. 2013. Effect of extreme temperatures on powdery mildew development and Hsp70 induction in tomato and wild Solanum spp. Plant Protect. Sci. 49 : 41-54.
https://doi.org/10.17221/45/2013-PPS
 
51. Lamech L.T., Haynes C.M. 2015. The unpredictability of prolonged activation of stress response pathways. J. Cell Biol. 209 (6) : 781-787.
https://doi.org/10.1083/jcb.201503107
 
52. Landi S., Capasso G., Ben Azaiez F.E., Jallouli S., Ayadi S., Trifa Y., Esposito S. 2019. Different roles of heat shock proteins (70 kDa) during abiotic stresses in barley (Hordeum vulgare) genotypes. Plants. 8 : 248.
https://doi.org/10.3390/plants8080248
 
53. Leng L., Liang Q., Jiang J., Zhang C., Hao Y., Wang X., Su W. 2017. A subclass of HSP70s regulate development and abiotic stress responses in Ar-abidopsis thaliana. J. Plant Res. 130 : 349-363.
https://doi.org/10.1007/s10265-016-0900-6
 
54. Li Q.B., Guy C.L. 2001. Evidence for non-circadian light/dark-regulated expression of Hsp70s in spinach leaves. Plant Physiol. 125 : 1633-1642.
https://doi.org/10.1104/pp.125.4.1633
 
55. Li Q.B., Haskell D.W., Guy C.L. 1999. Coordinate and noncoordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Mol. Boil. 39 : 21-34.
 
56. Li Z., Long R., Zhang T., Wang Z., Zhang F., Yang Q., Kang J., Sun Y. 2017. Molecular cloning and func-tional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.). J. Plant Res. 130 : 387-396.
https://doi.org/10.1007/s10265-017-0905-9
 
57. Lichtenthaler H.K. 1998. The stress concept in plants: an introduction. In: Stress of life from molecules to man. Ann. N. Y. Acad. Sci. 851 : 187-198.
https://doi.org/10.1111/j.1749-6632.1998.tb08993.x
 
58. Lin B., Wang J., Liu H., Chen R., Meyer Y., Barakat A., Delseny M. 2001. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress & Chaperones. 6 (3) : 201-208.
https://doi.org/10.1379/1466-1268(2001)006<0201:GAOTHS>2.0.CO;2
 
59. Lin S., Wu T., Li M., Huang X., Zhang Y., Han L., Wu B., Chen Y., Lin S., Lin D., Wu M., Wu J. 2019. Cloning, in silico characterization, subcellular local-ization, and expression of a heat shock cognate 70 kDa protein/gene (EjHsc70-2) from Eriobotrya japonica. Acta Physiol. Plant. 41 : 119.
https://doi.org/10.1007/s11738-019-2908-8
 
60. Liu J., Pang X., Cheng Y., Yin Y., Zhang Q., Su W., Hu B., Guo Q., Ha S., Zhang J., Wan H. 2018. The Hsp70 gene family in Solanum tuberosum: genome-wide identification, phylogeny, and expression pat-terns. Sci. Rep. 8 : 16628.
https://doi.org/10.1038/s41598-018-34878-7
 
61. Liu G.T., Wang J.F., Cramer G., Dai Z.W., Duan W., Xu H.G., Wu B.H., Fan P.G., Wang L.J., Li S.H. 2012. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol. 12 : 174.
https://doi.org/10.1186/1471-2229-12-174
 
62. Ma N.L., Rahmat Z., Lam S.S. 2013. A review of the "Omics" approach to biomarkers of oxidative stress in Oryza sativa. Int. J. Mol. Sci. 14 : 7515-7541.
https://doi.org/10.3390/ijms14047515
 
63. Majoul T., Bancel E., Triboi E., Hamida J.B., Bran-land G. 2004. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characteriza-tion of heat-responsive proteins from non-prolamins fractions. Proteomics. 4 : 505-513.
https://doi.org/10.1002/pmic.200300570
 
64. Makoto H., Setsuko K. 2007. Proteomic analysis of rice seedlings during cold stress. Proteomics. 7 : 1293-1302.
https://doi.org/10.1002/pmic.200600921
 
65. Manaa A., Ben Ahmed H., Valot B., Bouchet J.P., Aschi-Smiti S., Causse M., Faurobert M. 2011. Salt and genotype impact on plant physiology and root proteome variations in tomato. J. Exp. Bot. 62 : 2797-2813.
https://doi.org/10.1093/jxb/erq460
 
66. Mayer M.P., Bukau B. 2005. Hsp70 chaperones: cellu-lar functions and molecular mechanism. Cell. Mol. Life Sci. 62 : 670-684.
https://doi.org/10.1007/s00018-004-4464-6
 
67. Nam M.H., Heo E.J., Kim J.Y., Kim S.I., Kwon K.H., Seo J.B. Kwon O., Jong S.Y., Park Y.M. 2003. Pro-teome analysis of the responses of Panax ginseng C.A. Meyer leaves to high light: use of electrospray ionization quadrupole-time of flight mass spec-trometry and expressed sequence tag data. Prote-omics. 3 (12) : 2351-2367.
https://doi.org/10.1002/pmic.200300509
 
68. Niederbacher B., Winkler J.B., Schnitzler J.P. 2015. Volatile organic compounds as non-invasive mark-ers for plant phenotyping. J. Exp. Bot. 66 (18) : 5403-16.
https://doi.org/10.1093/jxb/erv219
 
69. Noël L.D., Cagna G., Stuttmann J., Wirthmüller L., Bet-suyaku S., Witte C.-P., Bhat R., Pochon N., Colby T.,Parker J.E. 2007. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Ara-bidopsis immune responses. Plant Cell. 19 : 4061-4076.
https://doi.org/10.1105/tpc.107.051896
 
70. Nordhues A., Schöttler M.A., Unger A.K., Geimer S., Schönfelder S., Schmollinger S., Rütgers M., Finazzi G., Soppa B., Sommer F., Mühlhaus T., Roach T., Krieger-Liszkay A., Lokstein H., Crespo J.L., Schroda M. 2012. Evidence for a role of VIPP1 in the structural organization of the photosynthetic ap-paratus in Chlamydomonas. Plant Cell. 24 (2) : 637-59.
https://doi.org/10.1105/tpc.111.092692
 
71. Pan X., Zhu B., Luo Y., Fu D. 2013. Unraveling the protein network of tomato fruit in response to ne-crotrophic phytopathogenic rhizopus nigricans. PLoS ONE. 8 : e73034.
https://doi.org/10.1371/journal.pone.0073034
 
72. Paul A.L., Zupanska A.K., Ostrow D.T., Zhang Y., Sun Y., Li J.L., Shanker S., Farmerie W.G., Amal-fitano C.E., Ferl R.J. 2012. Spaceflight transcrip-tomes: unique responses to a novel environment. Astrobiology. 12 : 40-56.
https://doi.org/10.1089/ast.2011.0696
 
73. Renaut J., Lutts S., Hofmann L., Hausman J. 2004. Re-sponses of poplar to chilling temperatures: proteo-mic and physiological aspects. Plant Biol. 6 : 81-90.
https://doi.org/10.1055/s-2004-815733
 
74. Rizhsky L., Liang H., Shuman J., Shulaev V., Davleto-va S., Mittler, R. 2004. When defense pathways col-lide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134 : 1683-1696.
https://doi.org/10.1104/pp.103.033431
 
75. Rodríguez-Serrano M., Romero-Puertas M.C., Pazmi-ño D.M., Testillano P.S., Risueño M.C., Del Río L.A., Sandalio L.M. 2009. Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol. 150 (1) :229-43.
https://doi.org/10.1104/pp.108.131524
 
76. San C., Sun-Hee K., Sung Oh I., Won-Joong J., Mi Sook H., Eun-Jeong P., Dong-Woog C. 2015. The heat shock protein 70a from 'Pyropia seriata' increases heat tolerance in 'Chlamydomonas'. Plant Omics. 8 (4) : 327-334.
 
77. Sarkar N.K., Kundnani P., Grover A. 2013. Functional analysis of Hsp70 superfamily proteins of rice (Ory-za sativa). Cell stress chaperones. 18 (4) : 427-37.
https://doi.org/10.1007/s12192-012-0395-6
 
78. Scarpeci T.E., Zanor M.I., Carrillo N., Mueller Roeber B., Valle E.M. 2008. Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: A focus on rapidly induced genes. Plant Mol. Biol. 66 : 361-78.
https://doi.org/10.1007/s11103-007-9274-4
 
79. Scharf K.D., Berberich T., Ebersberger I., Nover L. 2012. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochimica et Biophisica Acta. 1819 : 104-119.
https://doi.org/10.1016/j.bbagrm.2011.10.002
 
80. Sershen, Varghese B., Naidoo C., Pammenter N.W. 2016. The use of plant stress biomarkers in assessing the effects of desiccation in zygotic embryos from recalcitrant seeds: challenges and considerations. Plant Biol. J. 18 (3) : 433-444.
https://doi.org/10.1111/plb.12428
 
81. Shatilina Z.M., Riss H.W., Protopopova M.V., Trippe M., Meyer E.I., Pavlichenko V.V., Bedulina D.S., Axenov-Gribanov D.V., Timofeyev M.A. 2011. The role of the heat shock proteins (HSP70 and sHSP) for the thermotolerance of freshwater amphipods from contrasting habitats. J. Therm. Biol. 36 : 142-149.
https://doi.org/10.1016/j.jtherbio.2010.12.008
 
82. ShuiFeng Y.E., ShunWu Y.U., LieBo S.H.U., JinHong W.U., AiZhong W.U., LiJun L.U.O. 2012. Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice. Chinese Sci. Bull. 57 (4) : 336-343.
https://doi.org/10.1007/s11434-011-4863-7
 
83. Song G., Yuan S., Wen X., Xie Z., Lou L., Hu B., Cai Q., Xu B. 2018. Transcriptome analysis of Cd-treated switchgrass root revealed novel transcripts and the importance of HSF / HSP network in switchgrass Cd tolerance. Plant Cell Rep. 37 : 1485-1497.
https://doi.org/10.1007/s00299-018-2318-1
 
84. Sørensen J.G. 2010. Application of heat shock protein expression for detecting natural adaptation and ex-posure to stress in natural populations. Curr. Zool. 56 (6) : 703-713.
https://doi.org/10.1093/czoolo/56.6.703
 
85. Sørensen J.G., Kristensen T.N., Loeschcke V. 2003. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6 : 1025-1037.
https://doi.org/10.1046/j.1461-0248.2003.00528.x
 
86. Stirbet A., Lazár D., Kromdijk J., Govindjee. 2018. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica. 56 : 86-104.
https://doi.org/10.1007/s11099-018-0770-3
 
87. Sung D.Y., Guy C.L. 2003. Physiological and molecular assessment of altered expression of Hsc70-1 in Ara-bidopsis. Evidence for pleiotropic consequences. Plant Physiol. 132 (2) : 979-987.
https://doi.org/10.1104/pp.102.019398
 
88. Sung D.Y., Vierling E., Guy C.L. 2001. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol. 126 : 789-800.
https://doi.org/10.1104/pp.126.2.789
 
89. Swindell W.R., Huebner M., Weber A.P. 2007. Tran-scriptional profiling of Arabidopsis heat shock pro-teins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics. 8 : 125.
https://doi.org/10.1186/1471-2164-8-125
 
90. Taylor N.L., Heazlewood J.L., Day D.A., Millar A.H. 2005. Differential impact of environmental stresses on the pea mitochondrial proteome. Mol. Cell. Pro-teom. 4 : 1122-1133.
https://doi.org/10.1074/mcp.M400210-MCP200
 
91. Tomanek L., Somero G.N. 2000. Time course and mag-nitude of synthesis of heat-shock proteins in conge-neric marine snails (genus Tegula) from different tidal heights. Physiol. Biochem. Zool. 73 (2) : 249-256.
https://doi.org/10.1086/316740
 
92. Tang R., Gupta S.K., Niu S. Li X.Q., Yang Q., Chen G., Zhu W., Haroon M. 2020. Transcriptome analysis of heat stress response genes in potato leaves. Mol. Biol. Rep. 47 : 4311-4321.
https://doi.org/10.1007/s11033-020-05485-5
 
93. Tang T., Yu A., Li P., Yang H., Liu G., Liu L. 2016. Sequence analysis of the Hsp70 family in moss and evaluation of their functions in abiotic stress re-sponses. Sci Rep. 6 : 33650.
https://doi.org/10.1038/srep33650
 
94. Wang X.Q., Yang P.F., Liu Z., Liu W.Z., Hu Y., Chen H., Kuang T.Y., Pei Z.M., Shen H.S., He Y.K. 2009. Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol. 149 : 1739-1750.
https://doi.org/10.1104/pp.108.131714
 
95. Whitham S.A., Quan S., Chang H., Cooper B., Estes B., Zhu T., Wang X., Hou Y. 2003. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 33 : 271-283.
https://doi.org/10.1046/j.1365-313X.2003.01625.x
 
96. Wong C.E., Li Y., Whitty B.R., Diaz-Camino C., Akhter S.R., Brandle J.E., Golding G.B., Weretilnyk E.A., Moffatt B.A., Griffith M. 2005. Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol. Biol. 58 : 561-574.
https://doi.org/10.1007/s11103-005-6163-6
 
97. Ye T., Shi H., Wang Y., Chan Z. 2015. Contrasting changes caused by drought and submergence stress-es in bermudagrass (Cynodon dactylon). Front. Plant Sci. 6 : 951.
https://doi.org/10.3389/fpls.2015.00951
 
98. Yer E.N., Baloglu M.C., Ziplar U.T., Ayan S., Unver T. 2015. Drought-responsive Hsp70 gene analysis in Populus at genome-wide level. Plant Mol. Biol. Rep. 34 : 483-500.
https://doi.org/10.1007/s11105-015-0933-3
 
99. Young L.W., Wilen R.W., Bonham-Smith P.C. 2004. High temperature stress of Brassica napus during flowering reduces micro‐ and megagametophyte fer-tility, induces fruit abortion, and disrupts seed pro-duction. J. Exp. Bot. 55 (396) : 485-495.
https://doi.org/10.1093/jxb/erh038
 
100. Zhang Y., Sun M., Zhang Q. 2014. Proteomic analysis of the heat stress response in leaves of two con-trasting Chrysanthemum varieties. Plant Omics. 7 : 229-236.
 
101. Zou J., Liu A., Chen X., Zhou X., Gao G., Wang W., Zhang X. 2009. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J. Plant Physiol. 166 : 851-861.
https://doi.org/10.1016/j.jplph.2008.11.007
 
102. Zupanska A.K., Denison F.C., Ferl R.J., Paul A.-L. 2013. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Amer. J. Bot. 100 (1) : 235-248.
https://doi.org/10.3732/ajb.1200343