Visn. Hark. nac. agrar. univ., Ser. Biol., 2021, Issue 2 (53), p. 6-22


https://doi.org/10.35550/vbio2021.02.006




SALICYLIC ACID: SYNTHESIS AND STRESS-PROTECTIVE EFFECTS IN PLANTS


Yu. E. Kolupaev1, 2, T. O. Yastreb1, M. A. Shkliarevskyi1, Yu. V. Karpets1, A. I. Dyachenko3

1Dokuchaev Kharkiv National Agrarian University
(Kharkiv, Ukraine)
E-mail:
plant_biology@ukr.net
2Karazin Kharkiv National University
(Kharkiv, Ukraine)
3Institute of Cell Biology and Genetic Engineering
of National Academy of Sciences of Ukraine
(Kyiv, Ukraine)


Salicylic acid (SA) is now considered one of the key hormones involved in the regulation of many physiological programs and processes in plants, primarily in adaptation to action of biotic and abiotic stressors. SA is synthesized in plants by phenylpropanoid and isochorismate pathways. The first pathway begins with the conversion of phenylalanine to trans-cinnamic acid, which can be converted into two different metabolites: ortho-coumaric acid, and benzaldehyde. Both metabolites are ultimately converted into SA. In the isochorismate path, the chorismate formed from shikimic acid is isomerized into an isochorismate, the latter being transformed into SA. The effects of SA synthesis pathways activation and its accumulation in plants in response to stressors of different nature are shown: extreme temperatures, dehydration, salinization, heavy metals, etc. Treatment of plants with exogenous SA in optimal concentrations causes an increase in their resistance to abiotic stressors of various natures. Key protective reactions that can be induced by salicylic acid are increased gene expression and activity of antioxidant enzymes, increased content of low-molecular-weight antioxidants, as well as multifunctional protective compounds, in particular proline and sugars. Also under the influence of SA, an activation of synthesis of a number of heat shock proteins, dehydrins, and alternative oxidase was recorded. At the level of a whole plant organism, an important reaction is the induction by SA of a stomata closure. Despite the rich phenomenology of the SA effects, its functional interaction with other signaling mediators and plant stress hormones in the formation of plants’ adaptive responses remains insufficiently studied.


Key words: salicylic acid, plant hormones, signaling mediators, plant resistance, antioxidant system, compatible osmolytes, stress proteins

 


REFERENCES


1. Horielova E.I., Shkliarevskyi M.A., Ryabchun N.I., Kabashnikova L.F., Kolupaev Yu.E. 2020. Combined effect of salicylic acid and nitric oxide donor on development of hardening-induced frost resistance of wheat seedlings. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (50) : 93-104. (In Russian)
https://doi.org/10.35550/vbio2020.02.093
 
2. Dmitriev A.P. 2003. Signal molecules for plant defense responses to biotic stress. Russ. J. Plant Physiol. 50 (3) : 417-425.
https://doi.org/10.1023/A:1023894825462
 
3. Karpets Yu.V., Shkliarevskyi M.A., Horielova E.I., Kolupaev Yu.E. 2020. Participation of hydrogen sulfide in induction of antioxidant system in roots of wheat plantlets and their heat resistance by salicylic acid. Appl. Biochem. Microbiol. 56 (4) : 467-472.
https://doi.org/10.1134/S0003683820040079
 
4. Kolupaev Yu.E., Karpets Yu.V., Yastreb T.O.., Lugovaya A.A. 2018. Combined effect of salicylic acid and nitrogen oxide donor on stress-protective system of wheat plants under drought conditions. Appl. Biochem. Microbiol. 54 (4) : 418-424.
https://doi.org/10.1134/S0003683818040099
 
5. Kolupaev Yu.E., Yastreb T.O., Shvidenko N.V., Karpets Yu.V. 2012. Induction of heat resistance of wheat coleoptiles by salicylic and succinic acids: connection of the effect with the generation and neutralization of reactive oxygen species. Appl. Biochem. Microbiol. 48 (5) : 500-505.
https://doi.org/10.1134/S0003683812050055
 
6. Pashkevich L.V., Kabashnikova L.F. 2018. Role of sali-cylic acid in formation of system acquired resistance of plants at pathogenesis. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (45) : 31-48. (In Russian)
https://doi.org/10.35550/vbio2018.03.031
 
7. Sun X., Xi D.H., Feng H., Du J.B., Lei T., Liang H.G., Lin H.H. 2009. The dual effects of salicylic acid on dehydrin accumulation in water-stressed barley seedlings. Russ. J. Plant Physiol. 56 (3) : 348-354.
https://doi.org/10.1134/S1021443709030078
 
8. Sakhabutdinova A.R., Fatkhutdinova D.R., Shakirova F.M. 2004. Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. Appl. Biochem. Microbiol. 40 (5) : 501-505.
https://doi.org/10.1023/B:ABIM.0000040675.29736.91
 
9. Tarchevsky I.A., YakovlevaV.G., Egorova A.M. 2010. Salicylate-induced modification of plant proteomes (review). Appl. Biochem. Microbiol. 46 (3) : 241-252.
https://doi.org/10.1134/S0003683810030026
 
10. Ahanger M.A., Aziz U., Alsahli A.A., Alyemeni M.N., Ahmad P. 2020. Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules. 10 : 42. 
https://doi.org/10.3390/biom10010042
 
11. Alhaithloul H.A.S., Abu-Elsaoud A.M., Soliman M.H. 2020. Abiotic stress tolerance in crop plants: Role of phytohormones. In: Abiotic Stress in Plants. IntechOpen, pp. 1-23.
https://doi.org/10.5772/intechopen.93710
 
12. Bandurska H., Stroinski A. 2005. The effect of salicylic acid on barley response to water deficit. Acta Physiologiae Plantarum. 27 : 379-386.
https://doi.org/10.1007/s11738-005-0015-5
 
13. Banerjee A., Roychoudhury A. 2018. Interactions of brassinosteroids with major phytohormones: Antagonistic effects. J. Plant Growth Regul. 37 : 1025-1032.
https://doi.org/10.1007/s00344-018-9828-5
 
14. Chakraborty N., Sarkar A., Acharya K. 2020. Multifaceted roles of salicylic acid and jasmonic acid in plants against abiotic stresses. In: Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives, eds. Roychoudhury A., Tripathi D.K. John Wiley & Sons Ltd., pp. 374-387.
https://doi.org/10.1002/9781119552154.ch18
 
15. Chen Y.E., Cui J.M., Li G.X., Yuan M., Zhang Z.W., Yuan S., Zhang H.Y. 2016. Effect of salicylic acid on the antioxidant system and photosystem II in wheat seedlings. Biol. Plant. 60 : 139-147.
https://doi.org/10.1007/s10535-015-0564-4
 
16. Dean J.V., Mohammed L.A., Fitzpatrick T. 2005. The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta. 221 : 287-296.
https://doi.org/10.1007/s00425-004-1430-3
 
17. Dempsey D.A., Shah J., Klessig D.F. 1999. Salicylic acid and disease resistance in plants. Critical Reviews in Plant Sciences. 18 : 547-575.
https://doi.org/10.1080/07352689991309397
 
18. Divi U.K., Rahman T., Krishna P. 2010. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology. 10 : 151-164.
https://doi.org/10.1186/1471-2229-10-151
 
19. Freeman J.L., Garcia D., Kim D. Hopf A., Salt D.E. 2005. Constitutively elevated salicylic acid signals glutathione‐mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol. 137 : 1082-1091.
https://doi.org/10.1104/pp.104.055293
 
20. Habibi G. 2012. Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biologica Szegediensis. 56 (1) : 57-63.
 
21. Han Y., Chen G., Chen Y., Shen Z. 2015. Cadmium toxicity and alleviating effects of exogenous salicyl-ic acid in Iris hexagona. Bull. Environ. Contamin. Toxico. 95 (6) : 796-802.
https://doi.org/10.1007/s00128-015-1640-3
 
22. Hasanuzzaman M., Nahar K., Bhuiyan T.F., Anee T.I., Inafuku M., Oku H., Masayuki F. 2017. Salicylic Acid: An all-rounder in regulating abiotic stress responses in plants. In: Phytohormones - Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses. InTech, pp. 1-75.
https://doi.org/10.5772/intechopen.68213
 
23. Hashempour A., Ghasemnezhad M., Fotouhi Ghazvini R., Sohani M.M. 2014. The physiological and bio-chemical responses to freezing stress of olive plants treated with salicylic acid. Russ. J. Plant Physiol. 61 (4) : 443-450.
https://doi.org/10.1134/S1021443714040098
 
24. He Y., Zhu Z.J. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biol. Plant. 2008. 52 (4) : 792-795.
https://doi.org/10.1007/s10535-008-0155-8
 
25. Ignatenko A., Talanova V., Repkina N., Titov A. 2019. Exogenous salicylic acid treatment induces cold tol-erance in wheat through promotion of antioxidant enzyme activity and proline accumulation. Acta Physiologiae Plantarum. 41 : 80. 
https://doi.org/10.1007/s11738-019-2872-3
 
26. Janda M, Ruelland E. 2015. Magical mystery tour: Salicylic acid signaling. Environ. Exp. Bot. 114 : 117-128.
https://doi.org/10.1016/j.envexpbot.2014.07.003
 
27. Janda T., Gondor O. K., Yordanova R., Szalai G., Pal M. 2014. Salicylic acid and photosynthesis: signaling and effects. Acta Physiol. Plant. 36 : 2537-2546.
https://doi.org/10.1007/s11738-014-1620-y
 
28. Jin Q., Cui W., Xie, Y., Shen W. 2016. Carbon monox-ide: A ubiquitous gaseous signaling molecule in plants. In: Gasotransmitters in Plants, Signaling and Communication in Plants, eds. Lamattina L., Garcia-Mata C. Switzerland: Springer International Publishing, pp. 3-19.
https://doi.org/10.1007/978-3-319-40713-5_1
 
29. Kang G.Z., Li G.Z., Liu G.Q., Xu W., Peng X.Q., Wang C.Y., Zhu Y.J., Guo T.C. 2013. Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle // Biol. Plant. 57 (4) : 718-724.
https://doi.org/10.1007/s10535-013-0335-z
 
30. Kaplan F., Kopka J., Haskell D.W., Zhao W., Schiller K.C., Gatzke N., Sung D.Y., Guy C.L. 2004. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol. 136 : 4159-4168.
https://doi.org/10.1104/pp.104.052142
 
31. Karadağ B., Yücel N.C. 2017. Salicylic acid and fish flour pre-treatments affect wheat phenolic and fla-vonoid compounds, lipid peroxidation levels under salt stress. Cereal Res. Commun. 45 : 192-201.
https://doi.org/10.1556/0806.45.2017.004
 
32. Kaya C., Ashraf M., Alyemeni M.N., Corpas F.J, Ah-mad P. 2020. Salicylic acid-induced nitric oxide en-hances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. Journal of Hazardous Materials. 399 : 123020.
https://doi.org/10.1016/j.jhazmat.2020.123020
 
33. Kim Y., Park S., Gilmour S.J., Thomashow M.F. 2013. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcrip-tome and freezing tolerance of Arabidopsis. Plant J. 75 (3) : 364-376.
https://doi.org/10.1111/tpj.12205
 
34. Klessig D.F., Tian M., Choi H.W. 2016. Multiple targets of salicylic acid and its derivatives in plants and animals. Frontiers in Immunology. 7 : 206.
https://doi.org/10.3389/fimmu.2016.00206
 
35. Koo Y.M., Heo A.Y., Choi H.W. 2020. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 36 (1) : 1-10.
https://doi.org/10.5423/PPJ.RW.12.2019.0295
 
36. Lei T., Feng H., Sun X., Dai Q.-L., Zhang F., Liang H.-G., Lin H.-H. 2010. The alternative pathway in cu-cumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regula-tion. 60 : 35-42.
https://doi.org/10.1007/s10725-009-9416-6
 
37. Liu H.-T., Huang W.D., Pan Q.H., Weng F.-H., Zhan J.-C., Liu Y., Wan S.-B., Liu Y.-Y. 2006. Contributions of PIP2-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves. J. Plant Physiol. 163 : 405-416.
https://doi.org/10.1016/j.jplph.2005.04.027
 
38. Li N., Han X., Feng D., Yuan D., Huang L.-J. 2019.Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: Do we understand what they are whispering? // International Journal of Molecular Sciences. 20 (3) : 671. 
https://doi.org/10.3390/ijms20030671
 
39. Li Z.-G. 2015. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal. Behav. 10 (9) : e1051278.
https://doi.org/10.1080/15592324.2015.1051278
 
40. Li, Z.-G., Xie, L.-R., Li, X.-J. 2015. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J. Plant Physiol. 177 : 121-127.
https://doi.org/10.1016/j.jplph.2014.12.018
 
41. Min K., Showman L., Perera A., Arora R. 2018. Salicylic acid-induced freezing tolerance in spinach (Spinacia oleracea L.) leaves explored through metabolite profiling. Environ. Exp. Bot. 156 : 214-227.
https://doi.org/10.1016/j.envexpbot.2018.09.011
 
42. Mishra S., Bhardwaj M., Mehrotra S., Chowdhary A.A., Srivastava V. 2020. The contribution of phytohor-mones in plant thermotolerance. In: Heat Stress Tolerance in Plants: Physiological, Molecular and Genetic Perspectives, eds. Wani S.H., Kumar V. John Wiley & Sons Ltd., pp. 213-238.
https://doi.org/10.1002/9781119432401.ch10
 
43. Miura K., Tada Y. 2014.Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 5 : 4. 
https://doi.org/10.3389/fpls.2014.00004
 
44. Montillet J.L., Leonhardt N., Mondy S., Tranchimand S., Rumeau D., Boudsocq M., Garcia A.V., Douki T., Bigear J., Lauriere C., Chevalier A., Castresana C., Hirt H. 2013. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLOS Biol. 11 (3) : e1001513.
https://doi.org/10.1371/journal.pbio.1001513
 
45. Mori I.C., Pinontoan R., Kawano T., Muto S. 2001. Involvement of superoxide generation in salicylic ac-id-induced stomatal closure in Vicia faba. Plant Cell Physiol. 42 (12) : 1383-1388.
https://doi.org/10.1093/pcp/pce176
 
46. Mostofa M.G., Rahman M.M., Ansary M.M.U., Fujita M., Tran L.-S.P. 2019. Interactive effects of salicylic acid and nitric oxide in enhancing rice tolerance to cadmium stress. Int. J. Mol. Sci. 20 (22) : 5798.
https://doi.org/10.3390/ijms20225798
 
47. Mozafari A., Havas F., Ghaderi N. 2018. Application of iron nanoparticles and salicylic acid in in vitro cul-ture of strawberries (Fragaria × ananassa Duch.) to cope with drought stress. Plant Cell, Tissue and Or-gan Culture. 132 : 511-523.
https://doi.org/10.1007/s11240-017-1347-8
 
48. Mutlu S., Karadağoğlu Ö., Atici Ö., Nalbantoğlu B. 2013. Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biol. Plant. 57 (3) : 507-513.
https://doi.org/10.1007/s10535-013-0322-4
 
49. Mur L.A.J., Kenton P., Atzorn R., Miersch O., Waster-nack C. 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140 : 249-262.
https://doi.org/10.1104/pp.105.072348
 
50. Nawrath C., Métraux J.P. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell. 11 (8) : 1393-1404.
https://doi.org/10.1105/tpc.11.8.1393
 
51. Overmyer K., Brosché M., Kangasjärvi J. 2003. Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8 (7) : 335-342.
https://doi.org/10.1016/S1360-1385(03)00135-3
 
52. Pan D.-Y., Fu X., Zhang X.-W., Liu F.-J., Bi H.-G., Ai X.-Z. 2020. Hydrogen sulfide is required for salicylic acid-induced chilling tolerance of cucumber seedlings. Protoplasma. 257 : 1543-1557.
https://doi.org/10.1007/s00709-020-01531-y
 
53. Pedranzani H., Vigliocco A. 2017. Evaluation of jasmonic acid and salicylic acid levels in abiotic stress tolerance: Past and present. In: Mechanisms Behind Phytohormonal Signalling and Crop Abiotic Stress Tolerance, eds. Singh V.P. et al. N.Y.: Nova Science Publishers, pp. 329-370.
 
54. Peleg-Grossman S., Melamed-Boo, N., Levine A. 2012. ROS production during symbiotic infection sup-presses pathogenesis-related gene expression. Plant Signal. Behav. 7 : 409-415.
https://doi.org/10.4161/psb.19217
 
55. Qiao Z., Jing T., Liu Z., Zhang L., Jin Z., Liu D., Pei Y. 2015. H2S acting as a downstream signaling mole-cule of SA regulates Cd tolerance in Arabidopsis. Plant Soil. 393 : 137-146.
https://doi.org/10.1007/s11104-015-2475-8
 
56. Quan, L. J., Zhang, B., Shi, W. W., Li, H. Y. 2008. Hy-drogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J. Integr. Plant Biol., 50 (1) : 2-18.
https://doi.org/10.1111/j.1744-7909.2007.00599.x
 
57. Raskin I. 1992a. Role of salicylic acid in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43 : 439-463.
https://doi.org/10.1146/annurev.pp.43.060192.002255
 
58. Raskin I. 1992b. Salicylate, a new plant hormone. Plant Physiol. 99 (3) : 799-803.
https://doi.org/10.1104/pp.99.3.799
 
59. Rodríguez-Serrano M., Romero-Puertas M.C., Zabalza A., Corpas F.J., Gómez M., Del Río L.A., Sandalio L.M. 2006. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots imaging of reactive oxygen specles and nitric oxide accumulation in vivo. Plant Cell Environm. 29 (8) : 1532-1544.
https://doi.org/10.1111/j.1365-3040.2006.01531.x
 
60. Saleem M., Fariduddin Q., Janda T. 2021. Multifaceted role of salicylic acid in combating cold stress in plants: A review. J. Plant Growth Regul. 2021. 40 : 464-485.
https://doi.org/10.1007/s00344-020-10152-x
 
61. Santisree P., Jalli L.C.L., Bhatnagar-Mathur P., Sharma K.K. 2020. Emerging roles of salicylic acid and jasmonates in plant abiotic stress responses. In: Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives, eds. Roychoudhury A., Tripathi D.K. John Wiley & Sons Ltd., pp. 342-373.
https://doi.org/10.1002/9781119552154.ch17
 
62. Saruhan N., Saglam A., Kadioglu A. 2012. Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiologiae Plantarum. 34 (1) : 97-106.
https://doi.org/10.1007/s11738-011-0808-7
 
63. Sawada H., Shim I., Usui K. 2006. Induction of benzoicacid-2-hydroxylase and salicylic acid biosynthesis: Modulation by salt stress in rice seedlings. Plant Sci. 171 : 263-270.
https://doi.org/10.1016/j.plantsci.2006.03.020
 
64. Shakirova F.M., Bezrukova M.V., Allagulova Ch.R., Maslennikova D.R., Lubyanova A.R. 2017. Wheat germ agglutinin and dehydrins as ABA-regulated components of SA-induced cadmium resistance in wheat plants. In: Salicylic Acid: A Multifaceted Hormone, eds. Nazar R. et al. Singapore: Springer Nature, pp. 77-96.
https://doi.org/10.1007/978-981-10-6068-7_5
 
65. Shakirova F.M., Allagulova Ch.R., Maslennikova D.R., Klyuchnikova E.O., Avalbaev A.M., Bezrukova M.V. 2016. Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ. Exp. Bot. 122 : 19-28.
https://doi.org/10.1016/j.envexpbot.2015.08.002
 
66. Szalai G., Janda T. 2009. Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. Journal Agronomy & Crop Science. 195 (3) : 165-171.
https://doi.org/10.1111/j.1439-037X.2008.00352.x
 
67. Tewari R. K., Paek K. Y. 2011. Salicylic acid-induced nitric oxide and ROS generation stimulate ginsenoside accumulation in panax ginseng roots. J. Plant Growth Regul. 30 (4) : 396-404.
https://doi.org/10.1007/s00344-011-9202-3
 
68. Thompson A.M.G., Iancu C.V., Neet K.E., Dean, J.V.. Choe J.-Y. 2017. Differences in salicylic acid glucose conjugations by UGT74F1 and UGT74F2 from Arabidopsis thaliana. Sci. Rep. 7 : 46629.
https://doi.org/10.1038/srep46629
 
69. Van Aken O., Giraud E., Clifton R., Whelan J. 2009. Alternative oxidase: a target and regulator of stress responses. Physiol. Plant. 137 : 354-361.
https://doi.org/10.1111/j.1399-3054.2009.01240.x
 
70. Vicente R.S.M., Plasencia J. 2011. Salicylic acid beyond defence: Its role in plant growth and development. J. Exp. Bot. 62 (10) : 3321-3338.
https://doi.org/10.1093/jxb/err031
 
71. Vlot A.C., Dempsey D.A., Klessig D.F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Ann. Rev. Phytopathol. 47 : 177-206.
https://doi.org/10.1146/annurev.phyto.050908.135202
 
72. Wang J., Lv M., Islam F., Gill R.A., Yang C., Ali B., Yan G., Zhou W. 2016. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity. Ecotoxicol. Environ. Saf. 133 : 146-156.
https://doi.org/10.1016/j.ecoenv.2016.07.002
 
73. Wang W.,·Wang X.,·Zhang X.,·Wang Y., Huo Z., Huang M., Cai J., Zhou Q., Jiang D. 2021. Involvement of salicylic acid in cold priming-induced freezing tolerance in wheat plants. Plant Growth Regul. 93 : 117-130.
https://doi.org/10.1007/s10725-020-00671-8
 
74. Wang, W., Wang, X., Huang, M., Cai, J., Zhou, Q., Dai, T., Cao W., Jiang D. 2018. Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Front. Plant Sci. 3 (9) : 1137.
https://doi.org/10.3389/fpls.2018.01137
 
75. Yadu S., Dewangan T.L., Chandrakar V., Keshavkant S. 2017. Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiol. Mol. Biol. Plants. 23 (1) : 43-58.
https://doi.org/10.1007/s12298-016-0394-7
 
76. Zanganeh R., Jamei R., Rahmani F. 2019. Role of sali-cylic acid and hydrogen sulfide in promoting lead stress tolerance and regulating free amino acid com-position in Zea mays L. Acta Physiol. Plant. 41 : 94. https://doi.org/10.1007/s11738-019-2892-z
https://doi.org/10.1007/s11738-019-2892-z
 
77. Zhang Y., Xu S., Yang S., Chen Y. 2015. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma. 252 (3) : 911-924. 
https://doi.org/10.1007/s00709-014-0732-y
 
78. Zhang K., Halitschke R., Yin C., Liu C.-J., Gan S.-S. 2013. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc. Natl. Acad. Sci. USA. 110 (36) : 14807-14812.
https://doi.org/10.1073/pnas.1302702110
 
79. Zhou Y., Memelink J., Linthorst H.J.M. 2018. An E. coli biosensor for screening of cDNA libraries for isochorismate pyruvate lyase-encoding cDNAs. Mol. Genet. Genom. 293 : 1181-1190.
https://doi.org/10.1007/s00438-018-1450-5