Visn. Hark. nac. agrar. univ., Ser. Biol., 2020, Issue 3 (51), p. 48-57


https://doi.org/10.35550/vbio2020.03.048




INFLUENCE OF GROWTH CONDITIONS ON CONTENT OF MONOLIGNOLS IN PHRAGMITES AUSTRALIS’ LEAVES


O.M. Nedukha

Kholodny Institute of Botany

of National Academy of Science of Ukraine

(Kyiv, Ukraine)

E-mail: o.nedukha@hotmail.com


Using a cytochemical method and laser confocal microscopy, a sensitivity of content and distribution of monolignols in the leaves of Phragmites australis, grown in different natural conditions, was established. The leaves at stage of vegetative growth of two ecotypes of Ph. australis, which grew in water and on land, were studied. We present results obtained by comparing the data on the leaves of Ph. australis of air-water and terrestrial plants growing in natural conditions (Kyiv, Ukraine). It was found that the decrease in soil moisture leads to an increase in ratio of syringyl monolignol to guaiacyl (S/G) and to an increase in total content of monolignols (S+G) in epidermis and tissues of vessel bundles of the terrestrial plants. It was assumed that changing the ratio of monolignols and changing their content in the epidermis of leaves of terrestrial reed plants is one of the mechanisms of plant adaptation to lower soil moisture, which reduces transpiration and maintains optimal water potential in leaves of Ph. australis growing on land. Based on the obtained experimental data, we believe that high content of syringyl monolignol, which gives high strength to leaves and stems of terrestrial reeds, can serve as a marker for commercial use of these plants in various sectors of economy.


Key words: Phragmites australis, lignin, soil moisture, leaf, laser confocal microscopy

 


REFERENCES


1. Arasimovich V. 1987. The determination of water con-tent in plants samples. In: Methods of Biochemical Study of Plants (ed. Ermakov A.). Leningrad : 20-32.
 
2. Armstrong W., Brande R., Jackson M.B. 1994. Mechanisms of flood tolerance in plants. Acta Bot. Neer-land. 43 : 307-358.
https://doi.org/10.1111/j.1438-8677.1994.tb00756.x
 
3. Barros J., Serk H., Granlund I., Pesquet E. (2015). The cell biology of lignification in higher plants. Ann. Bot. 115 (7) : 1053-1074.
https://doi.org/10.1093/aob/mcv046
 
4. Baucher M., Monties B., Van Montagu M., Boerjan W. 1998. Biosynthesis and genetic engineering of lignin. Critical Reviews in Plant Sciences. 17 : 125-197.
https://doi.org/10.1080/07352689891304203
 
5. Begovic L., Ravlic E., Lepedus H., Leljak-Levanic D., Cesar V. 2015. The pattern of lignin deposition in the cell walls of internodes during barley Hordeum vulgare L. development. Acta Biologica Cracoviensia. Ser. Botanica. 57/2 : 55-66.
https://doi.org/10.1515/abcsb-2015-0017
 
6. Berthet S., Demontcaulet N., Pollet B., Bidzinski P., Cezard L., Bris P.L., Borrega N., Herve J., Boerjan W., Ralph J., Baucher M. (2003). Lignin biosynthesis. Ann. Rev. Plant Biol. 54 : 519-546.
https://doi.org/10.1146/annurev.arplant.54.031902.134938
 
7. Chaves M.M., Flexas J., Pinheiro C. 1999. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 103 (4) : 551-560.
https://doi.org/10.1093/aob/mcn125
 
8. Clevering O.A., Lissner J. 1999. Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquatic Botany. 64 : 185-208.
https://doi.org/10.1016/S0304-3770(99)00059-5
 
9. Christiernin M. 2006. Composition of Lignin in Outer Cell-Wall Layers. PhD Thesis, Division of Wood Chemistry and Pulp Technology, Royal Institute of Technology, Stockholm, pp. 1-53.
 
10. De Micco V., Aronne G. 2012. Morpho-anatomical traits for plant adaptation to drought. In: Plant Responses to drought stress, from morphology to molecular features (ed. Aroca R.). Springer-Verlag, Berlin, Heidelberg : 37-61.
https://doi.org/10.1007/978-3-642-32653-0_2
 
11. Fan L., Linker R., Gepstein S., Tanimoto E., Yamamoto R., Neumann P.M. 2006. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol. 140 (2) : 603-612.
https://doi.org/10.1104/pp.105.073130
 
12. Fengel D., Wegener G. 1984. Wood: chemistry, ultra-structure, reactions. Walter de Gruyter, Berlin, 611 p.
https://doi.org/10.1515/9783110839654
 
13. Gibson L.J. 2012. The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface. 9 : 2749-2766.
https://doi.org/10.1098/rsif.2012.0341
 
14. Granier Ch., Tardie F. 1999. Water deficit and spatial pattern of leaf development. Variability in responses can be simulated using a simple model of leaf development. Plant Physiol. 119 : 609-619.
https://doi.org/10.1104/pp.119.2.609
 
15. Hilal M., Parrado M., Rosa M., Gallardo M., Orce L., Massa M., Gonzabel J., Prado F. 2004. Epidermal lignin deposition in quinoa cotyledons in response to uv-B radiation. Photochem. Photobiol. 79 : 205-210.
https://doi.org/10.1562/0031-8655(2004)079<0205:ELDIQC>2.0.CO;2
 
16. Hu Y., Li WC, Xu Y.Q., Li G.J., Liao Y., Fu F.L. 2009. Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves. J. Appl. Genet. 50 (3): 213-223.
https://doi.org/10.1007/BF03195675
 
17. Jackson M.B., Colmer T.D. 2005. Response and adaptation by plants to flooding stress. Ann. Bot. 96 : 501-505.
https://doi.org/10.1093/aob/mci205
 
18. Kordyum E.L., Sytnik K.M., Baranenko V.V., Belyavskaya N.A., Klimchuk D.A., Nedukha O.M. 2003. Cellular mechanisms of adaptation of plants to the adverse effects of environmental factors in natural conditions (ed. Kordyum E.). Kiev : 277 p.
 
19. Lourenco A., Pereira H. 2017. Composition variability of lignin in biomass. In: Lignin - Trends and Applications. 2017. IntechOpen 71208 : 65-98.
 
20. Menden B., Kohlhoff M., Moerschbacher B.M. 2007. Wheat cell accumulate a syringil-rich lignin during the hypersensitive resistance response. Phytochem. 68 : 513-529.
https://doi.org/10.1016/j.phytochem.2006.11.011
 
21. Monties B. 1998. Novel structures and properties of lig-nins in relation to their natural and induced variabil-ity in ecotypes, mutants and transgenic plants. Polymer Degradation and Stability. 59 : 53-64.
https://doi.org/10.1016/S0141-3910(97)00166-3
 
22. Moura J.C., Bonine C.A., Viana J., Dornelas M.C., Mazzafera P. 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 52 : 360-376.
https://doi.org/10.1111/j.1744-7909.2010.00892.x
 
23. Nedukha O.M., Kordyum E.L., Ovrutskaya I.I. 1998a. Phenotypic cell changes of Alisma plantago-aquatica leaf plate in water deficit. 1. Anatomical analysis and surface structure. Ukr. Bot. J. 55 : 369-375.
 
24. Nedukha O.M., Kordyum E.L., Ovrutskaya I.I. 1998b. Phenotypic cell changes of Alisma plantago-aquatica leaf blade in water deficit. 2. Ultrastructural analysis and pigment composition. Ukr. Bot. J. 55 : 591-597.
 
25. Packer J.G., Meyerson L.A., Skalove H., Pysek P., Kueffer Ch. 2017. Biological flora of the british isles: Phragmites australis. J. Ecol. 105 : 1123-1162.
https://doi.org/10.1111/1365-2745.12797
 
26. Pauca-Comanescu M., Clevering O.A., Hanganu J., Gridin M. 1999. Phenotypic differences among ploidy levels of Phragmites australis growing in Romania. Aquat. Bot. 64 : 223-234.
https://doi.org/10.1016/S0304-3770(99)00052-2
 
27. Robinson D.O., Coate J.E., Singh A., Hong L., Bush M., Dayle J., Roeder A. 2018. Ploidy and size at multiple scales in the Arabidopsis sepal. Plant Cell. 30 : 2308-2329.
https://doi.org/10.1105/tpc.18.00344
 
28. Sato T., Takabe K., Fujita M. 2004. Immunolocalization of phenylalanine ammonia-lyase and cinnamate-4-hydroxylase in differentiating xylem of poplar. Comptes Rendus Biologies. 327 : 827-836.
https://doi.org/10.1016/j.crvi.2004.08.005
 
29. Schuetz M., Benske A., Smith R.A., Watanabe Y., Tobimatsu Y., Ralph J., Demura T., Ellis B., Samuels A.L. 2014. Laccases direct lignification in the dis-crete secondary cell wall domains of protoxylem. Plant Physiol. 166 (2) : 798-807.
https://doi.org/10.1104/pp.114.245597
 
30. Setter T., Flannigan B.A. 2001. Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J. Exp. Bot. 52 : 1401-1408.
https://doi.org/10.1093/jexbot/52.360.1401
 
31. Shakoor S.A., Bhat M.A., Soodan A.S. 2016. Taxonomic demarcation of Arundo donax L. and Phragmites karka (Retz.) Trin.ex Steud (Arundinoideae, Poaceae) from phytolith signatures. Flora. 224 : 130-153.
https://doi.org/10.1016/j.flora.2016.07.011
 
32. Tewksbury L., Casagrande R., Blossey B., Häfliger P., Schwarzländer M. 2002. Potential for Biological Control of Phragmites australis in North America. Biological Control. 23 : 191-212.
https://doi.org/10.1006/bcon.2001.0994
 
33. Tyree M.T., Cheung Y.N.S. 1977. Resistance to water flow in Fagus grandifolia leaves. Can. J. Bot. 55 : 2591-2599.
https://doi.org/10.1139/b77-296
 
34. Vartapetian B., Jackson M. 1997. Plant adaptation to anaerobic stress. Ann. Bot. 79 : 3-20.
https://doi.org/10.1093/oxfordjournals.aob.a010303
 
35. Wuyts N., Lognay G., Swennen R., De Waele D. 2003. Secondary metabolites in roots and implications for nematode resistance in Banana (Musa sp.) Proc. of Internat. Symp. "Banana Root System: Towards a Better Understanding for Its Productive Manage-ment", San José, 3-5 Nov, pp. 238-246.
 
36. Zhang S., Lin S., Shen A., Chen H., Wang F., Huai H. 2016. Traditional knowledge on "Luchai" [Phragmites australis (Cav.) Trin. Ex Steud. and Arundo donax L.] and their dynamics through urbanization in Yangzhou area, East China. Indian Journal of Traditional Knowledge. 15 (4): 580-586.