Visn. Hark. nac. agrar. univ., Ser. Biol., 2020, Issue 3 (51), p. 6-36


https://doi.org/10.35550/vbio2020.03.006




INDUCTION OF PLANTS RESISTANCE TO INFLUENCE OF ABIOTIC STRESSORS BY EXOGENOUS BRASSINOSTEROIDS


Yu. E. Kolupaev, Yu. V. Karpets, O. K. Polyakov

Dokuchaev Kharkiv National Agrarian University

(Kharkiv, Ukraine)

E-mail: plant_biology@ukr.net


Brassinosteroids (BS) are the class of plant polyhydroxysteroids structurally related to steroid hormones of vertebrates and insects. They play a key role in the maintaining of normal plant growth both under the optimal conditions and under the influence of unfavorable environmental factors. BS bind to specific receptors and mediate their action through the cascade of signal transduction, which ultimately entails the change in the expression of thousands of nuclear genes involved in the regulation of various functions of the plant organism. In addition to specific proteins, universal signaling mediators of non-protein nature, such as calcium ions, reactive oxygen species, nitric oxide (NO), hydrogen sulfide (H2S), as well as components of lipid signaling, are involved in the transduction of BS signals. BS exert the protective effect on plants under the influence of unfavorable factors of various natures – hypo- and hyperthermia, drought, salinity, heavy metals, etc. The wide range of BS effects is probably associated with their ability to regulate the expression of key genes involved in the ensuring of plant resistance: genes encoding the transcription factors MYB/MYC, genes of family of proteins WRKY and COR, dehydrins, heat shock proteins, cytoskeletal proteins, and antioxidant enzymes. The functioning of these genes determines the implementation of plant adaptation programs to stressors of various natures. Also, the change in the BS content in plants causes the change in their hormonal status in general. The review analyzes the data on the specific protective effects of BS and genes regulated by them, involved in adaptation to certain stress factors, summarizes the information on the physiological effects of new synthetic conjugates of BS with other phytohormones, in particular with salicylic acid. It is noted that the modification of signaling pathway of BS can be one of the strategic directions for solving the problem of adaptation of cultivated plants.


Key words: brassinosteroids, signal reception, signaling mediators, phytohormones, adaptive responses

 


REFERENCES


1. Avalbaev А.M., Yuldashev R.A., Shakirova F.M. 2006. Physiological effects of phytohormones brassino-steroids on plants. Uspekhi sovrem. biologii. 126 (2) : 192-200. (In Russian).
 
2. Allagulova C.R., Maslennikova D.R., Avalbaev A.M., Fedorova K.A., Yuldashev R.A., Shakirova F.M. 2015. Influence of 24-epibrassinolide on growth of wheat plants and the content of dehydrins under cadmium stress. Russ. J. Plant Physiol. 62 (4) : 465-471.
https://doi.org/10.1134/S1021443715040020
 
3. Budykina N.P., Shibaeva T.G., Titov A.F. 2012. Effects of epin extra, a synthetic analogue of 24,epibrassinolide, on stress resistance and produc-tivity of cucumber plants. Trudi Karel'skogo nauch-nogo tsentra RAN. 2 : 47-55. (In Russian).
 
4. Budykina N.P., Shibaeva T.G., Titov A.F. Effects of ep-in-extra on the growth, development, and yield of sweet pepper (Capsicum annuum L.) in greenhouses of northwestern Russia. Agrokhimiya. 2013. 11 : 38-44. (In Russian).
 
5. Vayner A.A., Kolupaev Yu.E., Khripach V.A. Separate and combined influence of 24-epibrassinolide and proline on antioxidant system of millet plants under salt stress. Fiziol. rart. i genet. 46 (5) : 428-436. (In Russian).
 
6. Vayner A.A., Kolupaev Yu.E., Yastreb T.O., Khripach V.A. 24-epibrassinolide induces salt tolerance of millet (Panicum miliaceum) seedlings involving reactive oxygen species. Doklady Natsional'noy akademii nauk Belarusi. 58 (4) : 67-70. (In Russian).
 
7. Grabovskaya N.I. 2018. Protective effect of epin on plants in the conditions of environmental pollution with lead by the example of cress (Lepidium sa-tivum). Priority Vectors for the Development of Industry and Agriculture. 1 (3) : 57-61 (in Russian).
 
8. Grabovskaya N.I., Babenko O.N. Protective effect of preparations containing brassinosteroids on plants exposed to environmental lead contamination: a review. J. Sib. Fed. Univ. Biol. 2020. 13 (2) : 129-163. (In Russian).
https://doi.org/10.17516/1997-1389-0322
 
9. Dmitriev O.P., Kravchuk Zh.M. 2005. Reactive oxygen species and plant immunity. Tsitol. Genet. 39 (4) : 64-74. (In Ukrainian).
 
10. Efimova M.V., Hasan J.A.K., Kholodova V.P., Kuz-netsov V.V., Savchuk A.L., Litvinovskaya R.P., Khripach V.A. 2014. Physiological mechanisms of enhancing salt tolerance of oilseed rape plants with brassinosteroids. Russ. J. Plant Physiol. 61 (6) : 733-743.
https://doi.org/10.1134/S1021443714060053
 
11. Efimova, M.V., Khripach, V.A., Boyko, E.V., Malofiy M.K., Kolomeychuk L.V., Murgan O.K., Vidershpan A.N., Mukhamatdinova, E.A., Kuznetsov, V.V. 2018. The priming of potato plants induced by brassinosteroids reduces oxidative stress and increases salt tolerance. Doklady Biological Sciences. 478 (1) : 33-36.
https://doi.org/10.1134/S0012496618010106
 
12. Ilkovets I.M., Sokolovsky S.G., Night M.R., Volotovsky I.D. Phytohormonal control of the concentration of ionized Ca2+ in the cytoplasm of a plant cell. Vestsi NAN Belarusi. Ser. biol. navuk. 3 : 58-62. (In Russian).
 
13. Karpets Yu.V., Kolupaev Yu.E. 2018. Participation of nitric oxide in 24-epibrassinolide-induced heat re-sistance of wheat coleoptiles: functional interactions of nitric oxide with reactive oxygen species and Ca ions. Russ. J. Plant Physiol. 65 (2) : 177-185.
https://doi.org/10.1134/S1021443718010053
 
14. Kolupaev Yu.E., Yastreb T.O., Shvidenko N.V., Karpets Yu.V. 2012. Induction of heat resistance of wheat coleoptiles by salicylic and succinic acids: Connection of the effect with the generation and neutralization of reactive oxygen species. Appl. Biochem. Microbiol. 48 (5) : 500-505.
https://doi.org/10.1134/S0003683812050055
 
15. Kolupaev Yu.E., Vayner A.A., Yastreb T.O., Oboznyi A.I., Khripach V.A. 2014. The role of reactive oxygen species and calcium ions in the implementa-tion of the stressprotective effect of brassinosteroids on plant cells. Appl. Biochem. Microbiol. 50 (6) : 658-663.
https://doi.org/10.1134/S0003683814060076
 
16. Kolupaev Yu.E., Vayner A.A., Yastreb T.O., Oboznyi A.I., Khripach V.A. 2015. Role of Ca ions in the induction of heat-resistance of wheat coleoptiles by brassinosteroids. Ukr. Biochem. J. 87 (1) : 127-133. (In Russian).
 
17. Kolupaev Yu.E., Vayner A.A. 2014. Mechanisms of the stress-protective effect of brassinosteroids on plants. Agrokhimiya. 7 : 69-84. (In Russian).
 
18. Kolupaev Yu.E., Karpets Yu.V. 2014. Reactive oxygen species and stress signaling in plants. Ukr. Biochem. J. 86 (4) : 18-35. (In Russian).
https://doi.org/10.15407/ubj86.04.018
 
19. Kolupaev Yu.E., Karpets Yu.V. 2019. Aktivnyye formy kisloroda, antioksidanty i ustoychivost' rasteniy k deystviyu stressorov (Reactive oxygen species, antioxidants and plants resistance to influence of stress-ors). Kyiv: Logos, 277 p.) (In Russian).
 
20. Kravets V.S., Kretinin S.V., Derevyanchuk M.V., S Drach. V., Litvinovska R.P., Khripach V.A. 2011.Effect of low temperatures on the level of en-dogenous brassinosteroids. Dopov. Nac. akad. nauk Ukr. 8 : 155-159. (In Russian).
 
21. Kravets' V.S., Derev'yanchuk M.V., Khrypach V.O. 2017. Brasynosteroyidy u rehulyatsiyi metabolizmu roslyn (Brassinosteroids in the regulation of plant metabolism) Lutsk: 112 p. (In Ukrainian).
 
22. Kretynin S.V., Bondarenko O.M., Kravets V.S., Khripach V.A., Kukhar V.P. 2015. Role of calcium in the response of cellular metabolism to epibrassinolide in transgenic tobacco cax1 plants. Dopov. Nac. akad. nauk Ukr. 9 : 105-112. (In Russian).
https://doi.org/10.15407/dopovidi2015.09.105
 
23. Lukatkin A.S., Kashtanova N.N., Duhovskis P. 2013. Influence of epibrassinolide on the thermal re-sistance of maize seedlings. Agrokhimiya. 6 : 24-31. 6 : 24-31. (In Russian).
 
24. Medvedev S.S. 2018. Principles of calcium signal gen-eration and transduction in plant cells. Russ. J. Plant Physiol. 65 (6) : 771-783.
https://doi.org/10.1134/S1021443718060109
 
25. Prusakova L.D.1, Chizhova S.I. 2005. Application of brassinosteroids under extreme conditions for plants. Agrokhimiya. 7 : 87-94. (In Russian).
 
26. Skaternaya T.D., Kharchenko O.V., Kretynin S.V., Kopich V.N., Litvinovskaya R.P., Chashchyna N.M., Khripach V.A., Kravets V.S. 2012. 24-epibrassinolide influence on the protein biosynthesis in maize seedlings during cold stress. Doklady NAN Belarusi. 56 (2) : 63-68. (In Russian).
 
27. Straltsova D.Y., Charnysh M.A., Hryvusevich P.V., Demidchik V.V. 2019. Non-genomic effects of ster-oid hormones: role of ion channels. J. Belarus State Univ. Biol. 3 : 3-12 (In Russian).
https://doi.org/10.33581/2521-1722-2019-3-3-12
 
28. Titov V.N., Smyslov D.G., Dmitrieva G.A., Boloto-va O.I. 2011. Plant growth regulators as a biological factor in reducing the protective effect of preparations containing brassinosteroids level of heavy metals in a plant. Bulletin of the Orel State Agrarian University [Vestnik Orlovskogo gosudarstvennogo agrarnogo universiteta]. 4 (31) : 4-6 (In Russian).
 
29. Shkliarevskyi M.A., Taraban D.A., Pavlov Yu.P., Kar-pets Yu.V. 2019. Induction of nonspecific resistance of seedlings of Scotch pine by influence of 24-epibrassinolide. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (48) : 75-86. (In Ukrainian).
https://doi.org/10.35550/vbio2019.03.075
 
30. Aghdam M.S., Mohammadkhani N. 2014. Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food Bioprocess Technol. 7 (3) : 909-914.
https://doi.org/10.1007/s11947-013-1165-x
 
31. Ahammed G.J., Li X., Liu A., Chen S. 2020. Brassinosteroids in plant tolerance to abiotic stress. Journal of Plant Growth Regul.
https://doi.org/10.1007/s00344-020-10098-0
 
32. Ali B., Hayat S., Ahmad A. 2007. 28-homobrassinolide ameliorates the saline stress in chickpea (Cicer ari-etinum L.). Environ Exp Bot. 59 : 217-223.
https://doi.org/10.1016/j.envexpbot.2005.12.002
 
33. Alyemeni M.N., Hayat S., Wijaya L., Anaji A. 2013. Foliar application of 28-homobrassinolide mitigates salinity stress by increasing the efficiency of photosynthesis in Brassica juncea. Acta Bot. Bras. 27 : 502-505.
https://doi.org/10.1590/S0102-33062013000300007
 
34. An C., Mou Z. 2011.Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53 : 412-428.
https://doi.org/10.1111/j.1744-7909.2011.01043.x
 
35. Anuradha S., Rao S.S.R. 2001. Effect of brassinosteroids on salinity stress induced inhibition of germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul. 33 : 151-153.
https://doi.org/10.1023/A:1017590108484
 
36. Anuradha S., Rao S.S.R. 2003. Application of brassino-steroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regul. 40 : 29-32.
https://doi.org/10.1023/A:1023080720374
 
37. Anwar A., Liu Y., Dong R., Bai L., Yu X., Li Y. 2018. The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol. Res. 51 : 46.
https://doi.org/10.1186/s40659-018-0195-2
 
38. Arora N., Bhardwaj R., Sharma P., Arora H.K. 2008. Effects of 28-homobrassinolide on growth, lipid pe-roxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiol. Plant. 30 : 833-839.
https://doi.org/10.1007/s11738-008-0188-9
 
39. Arora D., Jain P., Singh N., Kaur H., Bhatla S.C. 2016. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radical Res. 50 : 291-303.
https://doi.org/10.3109/10715762.2015.1118473
 
40. Bajguz A. 2011. Brassinosteroids - occurence and chemical structures in plants. In: Brassinosteroids: A Class of Plant Hormone (eds. Hayat S., Ahmad A.) Springer Science+Business Media B.V., pp. 1-28.
https://doi.org/10.1007/978-94-007-0189-2_1
 
41. Bajguz A., Hayat S. 2009.Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47 : 1-8.
https://doi.org/10.1016/j.plaphy.2008.10.002
 
42. Bartoli C.G., Casalongueb C.A., Simontacchia M., Marquez-Garciac B., Foyer C.H. 2013. Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ. Exp. Bot. 94 : 73-88.
https://doi.org/10.1016/j.envexpbot.2012.05.003
 
43. Bartwal A., Arora S. 2020. Brassinosteroids: molecules with myriad roles. In: Co-Evolution of Secondary Metabolites (eds. Mérillon J.-M., Ramawat K.G.). Springer Nature Switzerland A.G., pp. 869-895.
https://doi.org/10.1007/978-3-319-96397-6_18
 
44. Baxter A., Mittler R., Suzuki N. 2014. ROS as key players in plant stress signalling. J. Exp. Bot. 65 (5) : 1229-1240.
https://doi.org/10.1093/jxb/ert375
 
45. Bishop G.J., Yokota T. 2001. Plants steroid hormones, brassinosteroids: current highlights of molecular as-pects on their synthesis/metabolism, transport, per-ception and response. Plant Cell Physiol. 42 (2) : 114-120.
https://doi.org/10.1093/pcp/pce018
 
46. Bucker-Neto L., Paiva A.L.S., Machado R.D., Arenhart R.A., Margis-Pinheiro M. 2017. Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol. 40 (suppl 1) : 373-386.
https://doi.org/10.1590/1678-4685-gmb-2016-0087
 
47. Cano-Delgado A., Yin Y.H., Yu C., Vafeados D., Mora-Garcia S., Cheng J.C., Nam K.H., Li J.M., Chory J. 2004. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development. 131 (21) : 5341-5351.
https://doi.org/10.1242/dev.01403
 
48. Chen Z.-Y., Wang Y.-T., Pan X.-B., Xi Z.-M. 2019. Amelioration of cold-induced oxidative stress by exogenous 24-epibrassinolide treatment in grapevine seedlings: toward regulating the ascorbate-glutathione cycle. Sci Horticult. 244 : 379-387.
https://doi.org/10.1016/j.scienta.2018.09.062
 
49. Choudhary S.P., Yu J.-Q., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.-S.P. 2012. Benefits of brassi-nosteroid crosstalk. Trends Plant Sci. 17 (10) : 594-605.
https://doi.org/10.1016/j.tplants.2012.05.012
 
50. Chung Y., Choe S. 2013. The regulation of brassinosteroid biosynthesis in Arabidopsis. Critical Rev. Plant Sci. 32 : 396-410.
https://doi.org/10.1080/07352689.2013.797856
 
51. Corpas F.J., Barroso J.B. 2017. Nitric oxide synthase-like activity in higher plants. Nitric Oxide. 68 : 5-6.
https://doi.org/10.1016/j.niox.2016.10.009
 
52. Courtois C., Besson A., Dehan J., Bourque S., Dobrowolska G., Pugin A., Wendehenne D. 2008. Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. J. Exp. Bot. 59 : 155-163.
https://doi.org/10.1093/jxb/erm197
 
53. Cui J.X., Zhou Y.H., Ding J.G., Xia X.J., Shi K., Chen S.C., Asami T., Chen Z., Yu J.Q. 2011. Role of nitric oxide in hydrogen peroxide-dependent in-duction of abiotic stress tolerance by brassinosteroids in cucumberpce. Plant Cell Environ. 34 : 347-358.
https://doi.org/10.1111/j.1365-3040.2010.02248.x
 
54. Cukor J., Rasáková N.M., Linda R., Linhart L., Gutsch M.R., Kunes I. 2018. effects of brassinosteroid application on seed germination of scots pine under standard and heat stress conditions. Baltic Forestry. 24 (1) : 60-67.
 
55. Demidchik V., Cuin T.A., Svistunenko D., Smith S.J., Miller A.J., Shabala S., Sokolik A., Yurin V. 2010. Arabidopsis root K+ efflux conductance acti-vated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J. Cell Sci. 123 : 1468-1479.
https://doi.org/10.1242/jcs.064352
 
56. Deng X.-G., Zhu T., Zou L.-J., Han X.-Y., Zhou X., Xi D.-H., Zhang D.-W., Lin H.-H. 2016. Orchestra-tion of hydrogen peroxide and nitric oxide in brassi-nosteroid-mediated systemic virus resistance in Nicotiana benthamiana. Plant J. 85 : 478-493.
https://doi.org/10.1111/tpj.13120
 
57. Derevyanchuk M.V., Grabelnyh O.I., Litvinovskaya R.P., Voinikov V.K., Sauchuk A.L., Khripach V.A., Kravets V.S. 2014. Influence of brassinosteroids on plant cell alternative respiration pathway and antioxidant systems activity under abiotic stress conditions. Biopolym. Cell. 30 (6) : 436-442.
https://doi.org/10.7124/bc.0008BD
 
58. Divi U.K., Rahman T., Krishna P. 2010. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology. 10 : 151-164.
https://doi.org/10.1186/1471-2229-10-151
 
59. Ekinci M., Yildirim E., Atatu A.D., Turan M. 2012. Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. HortScience. 47 : 631-636.
https://doi.org/10.21273/HORTSCI.47.5.631
 
60. Eremina M., Unterholzner S.J., Rathnayake A.I., Castel-lanos M., Khan M., Kugler K.G., May S.T., Mayer K.F.X., Rozhon W., Poppenberger B. 2017. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc. Natl. Acad. Sci. USA. 114 (6) : 1038-1039.
 
61. Fariduddin Q., Khanam S., Hasan S.A., Ali B., Hayat S., Ahmad A. 2009. Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol. Plant 31 (5) : 889-897.
https://doi.org/10.1007/s11738-009-0302-7
 
62. Fariduddin Q., Khalil R.R. A.E., Mir B.A., Yusuf M., Ahmad A. 2013. 24-Epibrassinolide regulates photo-synthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ. Monit. Assess. 185 : 7845-7856.
https://doi.org/10.1007/s10661-013-3139-x
 
63. Farnese F.S., Menezes-Silva P.E., Gusman G.S., Oliveira J.A. 2016. When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front. Plant Sci. 7 : 471.
https://doi.org/10.3389/fpls.2016.00471
 
64. Flores T., Todd C.D., Tovar-Mendez A., Dhanoa P.K., Correa-Aragunde N., Hoyos M.E., Brownfield D.M., Mullen R.T., Lamattina L., Polacco J.C. 2008. Arginase-negative mutants of Arabidopsis exhibit in-creased nitric oxide signaling in root development. Plant Physiol. 147 : 1936-1946.
https://doi.org/10.1104/pp.108.121459
 
65. Foyer C.H., Noctor G. 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11 : 861-906.
https://doi.org/10.1089/ars.2008.2177
 
66. Fridman Y., Savaldi-Goldstein S. 2013. Brassinosteroids in growth control: How, when and where. Plant Sci. 209 : 24-31.
https://doi.org/10.1016/j.plantsci.2013.04.002
 
67. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48 : 909-930.
https://doi.org/10.1016/j.plaphy.2010.08.016
 
68. Gruszka D. 2013. The brassinosteroid signaling pathway - new key players and interconnections with other signaling networks crucial for plant development and stress tolerance. Int. J. Mol. Sci. 14 : 8740-8774.
https://doi.org/10.3390/ijms14058740
 
69. Gupta K.J., Kaiser W.M. 2010. Production and scavenging of nitric oxide by barley root mitochondria. Plant Cell Physiol. 51 : 576-584.
https://doi.org/10.1093/pcp/pcq022
 
70. Gupta P., Seth C.S. 2020. Interactive role of exogenous 24 Epibrassinolide and endogenous NO in Brassica juncea L. under salinity stress: Evidence for NR-dependent NO biosynthesis. Nitric Oxide. doi:
https://doi.org/10.1016/j.niox.2020.01.014
 
71. Hancock J.T., Whiteman M. 2014. Hydrogen sulfide and cell signaling: Team player or referee?. Plant Physiol. Biochem. 78 : 37-42.
https://doi.org/10.1016/j.plaphy.2014.02.012
 
72. Hanin M., Brini F., Ebel C., Toda Y., Takeda S., Masmoudi K. 2011. Plant dehydrins and stress tolerance. Plant Signal. Behav. 10 : 1503-1509.
https://doi.org/10.4161/psb.6.10.17088
 
73. Hara M. 2010. The multifunctionality of dehydrins. Plant Signal. Behav. 5 : 503-508.
https://doi.org/10.4161/psb.11085
 
74. Hara M., Kondo M., Kato T. 2013. A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical reducing activities. J. Exp. Bot. 64 : 1615-1624.
https://doi.org/10.1093/jxb/ert016
 
75. Hartung W., Wilkinson S., Davies W.J. 1998. Factors that regulate abscisic acid concentrations at the pri-mary site of action at the guard cell. J. Exp. Bot. 49. 361-367.
https://doi.org/10.1093/jxb/49.Special_Issue.361
 
76. Hasanuzzaman M., Nahar K., Fujita M. 2013. Plant response to salt stress and role of exogenous pro-tectants to mitigate salt-induced damages. In: Eco-physiology and responses of plants under salt stress (eds. Ahmad P., Azooz M.M., Prasad M.N.V.). Springer, pp. 25-87.
https://doi.org/10.1007/978-1-4614-4747-4_2
 
77. Hayat S., Alyemeni M.N., Hasan S.A. 2012. Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi Journal of Biological Sciences. 19 (3) : 325-335.
https://doi.org/10.1016/j.sjbs.2012.03.005
 
78. Hayat S., Hasan S.A., Yusuf M., Hayat Q., Ahmad A. 2010. Effect of 28-homobrassinolide on photosyn-thesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiate. Environ. Exp. Bot. 69 : 105-112.
https://doi.org/10.1016/j.envexpbot.2010.03.004
 
79. Hedrich R. 2012. Ion channels in plants. Physiol. Rev. 92 : 1777-1811.
https://doi.org/10.1152/physrev.00038.2011
 
80. Houimli S.I.M., Denden M., Mouhandes B.D. 2010. Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants un-der NaCl-stress. Eurasia J. Biosci. 4 : 96-104.
https://doi.org/10.5053/ejobios.2010.4.0.12
 
81. Hu W.-H., Yan X.-H., Xiao Y.-A., Zeng J.-J., Qi H.-J., Ogweno J.O. 2013. 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci. Hortic. 150 : 232-237.
https://doi.org/10.1016/j.scienta.2012.11.012
 
82. Janicka M., Reda M., Czyzewska K., Kabala K. 2018. Involvement of signalling molecules NO, H2O2 and H2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress. Funct. Plant Biol. 45 (4) : 428-439.
https://doi.org/10.1071/FP17095
 
83. Jiroutova P., Oklestkova J., Strnad M. 2018. Crosstalk between Brassinosteroids and ethylene during plant growth and under abiotic stress conditions. Int. J. Mol. Sci. 19 : 3283. 
https://doi.org/10.3390/ijms19103283
 
84. Jeandroz S., Wipf D., Stuehr D.J., Lamattina L., Melkonian M., Tian Z., Zhu Y., Carpenter E.J., Wong G.K., Wendehenne D. 2016. Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci. Signal. 9 : re2.
https://doi.org/10.1126/scisignal.aad4403
 
85. Jiang Y.P., Huang L.F., Cheng F., Zhou Y.H., Xia X.J., Mao W.H., Shi K., Yu J.Q. 2013. Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol. Plant. 148 : 133-145.
https://doi.org/10.1111/j.1399-3054.2012.01696.x
 
86. Jin S.H., Li X.Q., Wang G.G., Zhu X.T. 2015. Brassinosteroids alleviate high-temperature injury in Ficus concinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. AoB Plants. 7 : plv009.
https://doi.org/10.1093/aobpla/plv009
 
87. Johnson J.M., Reichelt M., Vadassery J., Gershenzon J., Oelmüller R. 2014. An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress. BMC Plant Biol. 14 : 162. 
https://doi.org/10.1186/1471-2229-14-162
 
88. Kamuro Y., Takatsuto S. 1999. Potential application of brassinosteroids in agricultural fields. In: Brassino-steroids: Steroidal Plant Hormones (eds. Sakurai A., Yokota T., Clouse S.D.). Tokyo : Springer-Verlag : 223-241.
 
89. Kanwar M.K., Bhardwaj R., Arora P., Chowdhary S.P., Sharma P., Kumar S. 2012. Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere. 86 (1) : 41-49.
https://doi.org/10.1016/j.chemosphere.2011.08.048
 
90. Kanwar M.K., Bhardwaj R., Chowdhary S.P., Arora P., Sharma P., Kumar S. 2013. Isolation and characteri-zation of 24-epibrassinolide from Brassica juncea L. and its effects on growth; Ni ion uptake: antioxidant defense of Brassica plants and in vitro cytotoxicity. Acta Physiol. Plant. 35 (4) : 1351-1362.
https://doi.org/10.1007/s11738-012-1175-8
 
91. Kanwar M.K., Poonam, Bhardwaj R. 2015. Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L. Ecotoxicol. Environ. Saf. 115 : 119-125.
https://doi.org/10.1016/j.ecoenv.2015.02.016
 
92. Kapoor D., Rattan A., Gautam V., Bhardwaj R. 2016. Alleviation of cadmium and mercury stress by sup-plementation of steroid hormone to Raphanus sativus seedlings. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 86 (3) : 661-666.
https://doi.org/10.1007/s40011-015-0501-5
 
93. Karpets Yu.V., Shkliarevskyi M.A., Khripach V.A., Ko-lupaev Yu.E. 2020. State of enzymatic antioxidative system and heat resistance of wheat plantlets treated by combination of 24-epibrassinolide and NO donor. Cereal Res. Commun.
https://doi.org/10.1007/s42976-020-00090-5
 
94. Kaur N., Kirat K., Saini S., Sharma I., Gantet P., Pati P.K. 2016. Reactive oxygen species generating sys-tem and brassinosteroids are linked to salt stress ad-aptation mechanisms in rice. Plant Signal. Behav. 11 : 12, e1247136.
https://doi.org/10.1080/15592324.2016.1247136
 
95. Kaur N., Gupta A.K. 2005. Signal transduction pathways under abiotic stresses in plant. Curr. Sci. 88 : 1771-1780.
 
96. Kaya C., Ashraf M., Alyemeni M.N., Ahmad P. 2020. The role of nitrate reductase in brassinosteroid-induced endogenous nitric oxide generation to im-prove cadmium stress tolerance of pepper plants by upregulating the ascorbate-glutathione cycle. Ecotoxicol. Environ. Saf. 196 : 110483.
https://doi.org/10.1016/j.ecoenv.2020.110483
 
97. Khripach V., Zhabinskii V., De Groot A. 2000. Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 86 : 441-447.
https://doi.org/10.1006/anbo.2000.1227
 
98. Kim M.C., Chung W.S., Yun D., Cho M.J. 2009. Calcium and calmodulin-mediated regulation of gene expression in plants. Mol. Plant. 2 : 13-21.
https://doi.org/10.1093/mp/ssn091
 
99. Kolbert Z., Barroso J.B., Brouquisse R., Corpas F.J., Gupta K.J., Lindermayr C., Loake G.J., Palma J.M., Petřivalský M., Wendehenne D., Hancock J.T. 2019. A forty year journey: The generation and roles of NO in plants. Nitric Oxide. 93 : 53-70
https://doi.org/10.1016/j.niox.2019.09.006
 
100. Kolupaev Yu.E., Karpets Yu.V., Dmitriev A.P. 2015. Signal mediators in plants in response to abiotic stress: calcium, reactive oxygen and nitrogen species. Cytol. Genet. 49 (5) : 338-348.
https://doi.org/10.3103/S0095452715050047
 
101. Krishna P., Prasad B.D., Rahman T. 2017. Brassinosteroid action in plant abiotic stress tolerance. In: Brassinosteroids: Methods and Protocols, Methods in Molecular Biology, vol. 1564. (eds. Russinova E., Cano-Delgado A.I.). Springer Science+Business Media LLC, pp. 193-202.
https://doi.org/10.1007/978-1-4939-6813-8_16
 
102. Kulaeva O.N., Burkhanova E.A., Fedina A.B., Khokhlova V.A., Bokebayeva G.A., Vorbrodt H.M., Adam G. 1991. Effect of brassinosteroids on protein synthesis and plant-cell ultrastructure under stress conditions. Brassinosteroids (ed. Cutler H.). Washington : 141-155.
https://doi.org/10.1021/bk-1991-0474.ch012
 
103. Lai D.W., Mao Y., Zhou H., Li F., Wu M., Zhang J., He Z., Cui W., Xie Y. 2014. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci. 225 : 117-129.
https://doi.org/10.1016/j.plantsci.2014.06.006
 
104. Li B., Zhang C., Cao B., Qin G., Wang W., Tian S. 2012. Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids. 43 (6) : 2469-2480.
https://doi.org/10.1007/s00726-012-1327-6
 
105. Li Z.G., Luo L.J., Sun Y.F. 2015. Signal crosstalk be-tween nitric oxide and hydrogen sulfide may be involved in hydrogen peroxide induced thermotolerance in maize seedlings. Russ J. Plant Physiol. 62 : 507-514.
https://doi.org/10.1134/S1021443715030127
 
106. Li M.Q., Ahammedl G.J., Li C.X., Bao X., Yu J.Q., Huang C.L., Yin H.Q., Zhou J. 2016. Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front. Plant Sci. 7 : 13. 
https://doi.org/10.3389/fpls.2016.00615
 
107. Li H., Ye K., Shi Y., Cheng J., Zhang X., Yang S. 2017. BZR1 Positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in arabidopsis. Mol. Plant. 10 (4) : 545-559.
https://doi.org/10.1016/j.molp.2017.01.004
 
108. Li Y., Wu Y., Liao W., Hu L., Dawuda M.M., Jin X., Tang Z., Yang J., Yu J. 2020. Nitric oxide is involved in the brassinolide-induced adventitious root development in cucumber. BMC Plant Biol. 20 (1) : 102.
https://doi.org/10.1186/s12870-020-2320-y
 
109. Li Q.-F., He J.-X. 2013. Mechanisms of signaling cross-talk between brassinosteroids and gibberellins. Plant Signal Behav. 8 : e24686.
https://doi.org/10.4161/psb.24686
 
110. Li Z.-G., Xie L.-R., Li X.-J. 2015. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J. Plant Physiol. 177 : 121-127.
https://doi.org/10.1016/j.jplph.2014.12.018
 
111. Li Q., Lancaster J.R. 2013. Chemical foundations of hydrogen sulfide biology. Nitric Oxide. 35 : 21-34.
https://doi.org/10.1016/j.niox.2013.07.001
 
112. Litvinovskaya R.P., Minin P.S., Raiman M.E., Zhilitskaya G. A., Kurtikova A.L., Kozharnovich K.G., Derevyanchuk M.V., Kravets V.S., Khripach V.A. 2013. Indolyl-3-acetoxy derivatives of brassi-nosteroids: synthesis and growth-regulating activity. Chem. Nat. Compd. 49 : 478-485.
https://doi.org/10.1007/s10600-013-0643-8
 
113. Litvinovskaya R.P., Vayner A.A., Zhylitskaya H.A., Kolupaev Yu.E., Savachka A.P., Khripach V.A. 2016. Synthesis and stress-protective action on plants of brassinosteroid conjugates with salicylic acid. Chem. Nat. Compd. 52 : 452-457.
https://doi.org/10.1007/s10600-016-1671-y
 
114. Liu Y., Hao Y., Liu Y., Huang W. 2005. Effects of wounding and exogenous jasmonic acid on the pe-roxidation of membrane lipid in pea seedlings leaves. Agricultural Sciences in China. 4 : 614-620.
 
115. Liu H.T., Huang W.D., Pan Q.H., Weng F.H., Zhan J.C., Liu Y., Wan S.B., Liu Y.Y. 2006. Contributions of PIP2-specific-phospholipase C and free salicylic acid to heat acclimation induced thermotolerance in pea leaves. J. Plant Physiol. 163 (4) : 405-416.
https://doi.org/10.1016/j.jplph.2005.04.027
 
116. Liu J., Yang R., Jian N., Wei L., Ye L., Wang R., Gao H., Zheng Q. 2020. Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance. Plant Cell Environ. 43 : 1348-1359.
https://doi.org/10.1111/pce.13757
 
117. Ma Y., Shao L., Zhang W., Zheng F. 2020. Hydrogen sulfide induced by hydrogen peroxide mediates brassinosteroid-induced stomatal closure of Arabidopsis thaliana. Funct. Plant Biol.
https://doi.org/10.1071/FP20205
 
118. Mazorra L.M., Holton N., Bishop G.J., Núñez M. 2011. Heat shock response in tomato brassinosteroid mu-tants indicates that thermotolerance is independent of brassinosteroid homeostasis. Plant Physiol. Bio-chem. 49 : 1420-1428.
https://doi.org/10.1016/j.plaphy.2011.09.005
 
119. Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. 2011. ROS signaling: the new wave?. Trends Plant Sci. 16 (6) : 300-309.
https://doi.org/10.1016/j.tplants.2011.03.007
 
120. Munemasa S., Oda K., Watanabe-Sugimoto M., Naka-mura Y., Shimoishi Y., Murata Y. 2007. The coro-natine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 143 : 1398-1407.
https://doi.org/10.1104/pp.106.091298
 
121. Mur L.A.J., Mandon J., Persijn S., Cristescu S.M., Moshkov I.E., Novikova G.V., Hall M.A., Harren F.J.M., Hebelstrup K.H., Gupta K.J. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants. 2013. 5 : pls052. 
https://doi.org/10.1093/aobpla/pls052
 
122. Nawaz F., Naeem M., Zulfiqar B., Akram A., Ash-raf M.Y., Raheel M., Shabbir R.N., Hussain R.A., Anwar I., Aurangzaib M. 2017. Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review. Environ Sci Pollut Res. 24 (19) : 15959-15975.
https://doi.org/10.1007/s11356-017-9163-6
 
123. Neill S., Bright J., Desikan R., Hancock J., Harrison J., Wilson I. 2008. Nitric oxide evolution and percep-tion. J. Exp. Bot. 59 : 25-35.
https://doi.org/10.1093/jxb/erm218
 
124. Nie W.F. Wang M.-M., Xia X.-J., Zhou Y.-H., Shi K., Chen Z., Yu J.Q. 2013. Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant Cell Environ. 36 : 789-803.
https://doi.org/10.1111/pce.12014
 
125. Nolan T., Vukasinovic N., Liu D., Russinova E., Yin Y. 2020. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell. 32 : 295-318.
https://doi.org/10.1105/tpc.19.00335
 
126. Ogasawara Y., Kaya H., Hiraoka G., Yumoto F., Ki-mura S., Kadota Y., Hishinuma H., Senzaki E., Yamagoe S., Nagata K., Nara M., Suzuki K., Tano-kura M., Kuchitsu K. 2008. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem. 283 : 8885-8892.
https://doi.org/10.1074/jbc.M708106200
 
127. Ogweno J.O., Song X.S., Shi K., Hu W.H., Mao W. H., Zhou Y.H. Yu J.Q., Nogues S. 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul. 27 : 49-57.
https://doi.org/10.1007/s00344-007-9030-7
 
128. Peleg-Grossman S., Melamed-Book N., Levine A. 2012. ROS production during symbiotic infection sup-presses pathogenesis-related gene expression. Plant Signaling Behav. 7 : 409-415.
https://doi.org/10.4161/psb.19217
 
129. Petridis A., Doll S., Nichelmann L., Bilger W., Mock H.-P. 2016. Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation. New Phytol. 211 : 912-925.
https://doi.org/10.1111/nph.13986
 
130. Petrov V.D., Breusegem F.V. 2012. Hydrogen peroxide - a central hub for information flow in plant cell. AoB Plants. pls014. 
https://doi.org/10.1093/aobpla/pls014
 
131. Pitzschke A, Hirt H. 2006. Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol. 141 (2) : 351-356.
https://doi.org/10.1104/pp.106.079160
 
132. Planas-Riverola A., Gupta A., Betegon-Putze I., Bosch N., Ibanes M., Cano-Delgado A.I. 2019. Brassinosteroid signaling in plant development and adaptation to stress. Development. 146. dev151894. 
https://doi.org/10.1242/dev.151894
 
133. Rady M.M. 2011. Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci. Horticul. 129 (2) : 232-237.
https://doi.org/10.1016/j.scienta.2011.03.035
 
134. Rajewska I., Talarek M., Bajguz A. 2016. Brassinosteroids and response of plants to heavy metals action. Front. Plant Sci. 7 : 629.
https://doi.org/10.3389/fpls.2016.00629
 
135. Rattan A.,·Kapoor D., Kapoor N.,·Bhardwaj R., Shar-ma A. 2020. Brassinosteroids Regulate Functional Components of Antioxidative Defense System in Salt Stressed Maize Seedlings. J. Plant Growth Regul.
https://doi.org/10.1007/s00344-020-10097-1
 
136. Reyes Y., Martinez L., DellAmico J., Nunez M., Pieters A.J. 2015. Reversion of deleterious effects of salt stress by activation of ROS detoxifying enzymes via foliar application of 24-epibrassinolide in rice seedlings. Theor. Exp. Plant Physiol. 27 : 31-40.
https://doi.org/10.1007/s40626-014-0029-8
 
137. Ribeiro D.G.S. da Silva B.R.S.,·Lobato A.K.S. 2019. Brassinosteroids induce tolerance to water deficit in soybean seedlings: contributions linked to root anatomy and antioxidant enzymes. Acta Physiol. Plant. 41 : 82.
https://doi.org/10.1007/s11738-019-2873-2
 
138. Sadeghi F., Shekafandeh A. 2014. Effect of 24-epibrassinolide on salinity-induced changes in loquat (Eriobotrya japonica Lindl). Journal of Applied Botany and Food Quality. 87 : 182-189.
 
139. Shahid M.A., Pervez M.A., Balal R.M., Mattson N.S., Rashid A., Ahmad R, Ayyub C.M., Abbas T. 2011. Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Aust. J. Crop. Sci. 5 : 500-510.
 
140. Sharma I., Pati P. K., Bhardwaj R. 2011. Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L. Acta Physiol. Plant. 33 (5) : 1723-1735.
https://doi.org/10.1007/s11738-010-0709-1
 
141. Sharma P., Kumar A., Bhardwaj R. 2016. Plant steroidal hormone epibrassinolide regulate heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ. Exp. Bot. 122 : 1-9.
https://doi.org/10.1016/j.envexpbot.2015.08.005
 
142. Sharma A., Kumar V., Kumar R., Kohli S.K., Yadav P., Kapoor D., Khan E.A., Parihar R.D.N, Shahzad B., Thukral A.K., Bhardwaj R. 2020. Role of Plant Growth Regulators in Ameliorating Heavy Metal Caused Oxidative Stress in Plants: An Update. In: Metal Toxicity in Higher Plants (eds: Landi M., Shemet S.A., Fedenko V.S.). Nova Science Publish-ers, pp. 117-136.
 
143. Shimada Y., Goda H., Nakamura A., Takatsuto S., Fuji-oka S., Yoshida S. 2003. Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol. 131 (1) : 287-297.
https://doi.org/10.1104/pp.013029
 
144. Singh I., Shono M. 2005. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul. 47 : 111-119.
https://doi.org/10.1007/s10725-005-3252-0
 
145. Sirohi G., Kapoor M. 2020. Brassinosteroids in lowering abiotic stress-mediated damages. In: Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives (eds. Roychoudhury A.,Tripathi D.K.) John Wiley & Sons Ltd., pp. 318-326
https://doi.org/10.1002/9781119552154.ch15
 
146. Soliman M., Elkelish A., Souad T., Alhaithloul H., Muhammad F. 2020. Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. Physiol. Mol. Biol. Plants.
https://doi.org/10.1007/s12298-020-00765-7
 
147. Straltsova D., Chykun P., Subramaniam S., Sosan A., Kolbanov D., Sokolik A., Demidchik V. 2015. Cation channels are involved in brassinosteroid signalling in higher plants. Steroids. 97 : 98-106.
https://doi.org/10.1016/j.steroids.2014.10.008
 
148. Swamy K. N., Anuradha S., Ramakrishna B., Siddu-lu N., Rao S.S.R. 2011. Cadmium toxicity is diminished by 24-epibrassinolide in seedlings of Trigonella foenumgraecum L. Genetics Plant Physiol. 1 (3-4) : 163-175.
 
149. Symons G.M., Reid J.B. 2004. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol. 135 (4) : 2196-2206.
https://doi.org/10.1104/pp.104.043034
 
150. Tabur S., Demir K. 2009. Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Regul. 58 : 119-123.
https://doi.org/10.1007/s10725-008-9357-5
 
151. Talaat N.B., Shawky B.T. 2012. 24-epibrassinolide ameliorates the saline stress and improves the productivity of wheat (Triticum aestivum L.). Environ. Exp. Bot. 82 : 80-88.
https://doi.org/10.1016/j.envexpbot.2012.03.009
 
152. Talaat N.B., Shawky B.T. 2013. 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant in wheat (Triticum aestivum L.). Acta Physiol. Plant. 35 : 729-740.
https://doi.org/10.1007/s11738-012-1113-9
 
153. Tanveer M., Shahzad B., Sharma A., Biju S., Bhardwaj R. 2018. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A re-view. Plant Physiol. Biochem. 130 : 69-79.
https://doi.org/10.1016/j.plaphy.2018.06.035
 
154. Thussagunpanit J., Kanapol J., Lily K., Wi Stith C., Porn P., Sureeporn S., Apichart S. 2014. Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J. Plant Growth Regul. 34 : 320-331.
https://doi.org/10.1007/s00344-014-9467-4
 
155. Tian B., Zhang Y., Jin Z., Liu Z., Pei Y. 2017. Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet. Frontiers in Bioscience (Landmark). 22 : 530-538.
https://doi.org/10.2741/4500
 
156. Vázquez M.N., Guerrero Y.R., de la Noval W.T., González L.M., Zullo M.A. 2019. T. Advances on exogenous applications of brassinosteroids and their analogs to enhance plant tolerance to salinity: A review. Austr. J. Crop Sci. 13 (01) : 115-121.
https://doi.org/10.21475/ajcs.19.13.01.p1404
 
157. Wang H., Ji F., Zhang Y., Hou J., Liu W., Huang J., Liang W. 2019a. Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium tox-icity. Plant Cell Environ. 42 (8) : 2340-2356.
https://doi.org/10.1111/pce.13555
 
158. Wang Y.-T., Chen Z.Y., Jiang Y., Duan B,-B,, Xi Z,-M, 2019b. Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.). Sci. Hortic. 256 : 108596.
https://doi.org/10.1016/j.scienta.2019.108596
 
159. Wilen R.W., Sacco M., Gusta L.V., Krishna P. 1995. Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus inermis) cell cultures. Physiol. Plant. 95 : 195-202.
https://doi.org/10.1034/j.1399-3054.1995.950204.x
 
160. Xia X.J., Wang Y.J., Zhou Y.H., Tao Y., Mao W.H., Shi K., Asami T., Chen Z., Yu J.Q. 2009. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol. 150 : 801-814.
https://doi.org/10.1104/pp.109.138230
 
161. Yadav P., Kaur R., Kanwar M.K., Sharma A., Verma V., Sirhindi G., Bhardwaj R. 2018. Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings. Ecotoxicol. Environ. Saf. 147 : 725-734.
https://doi.org/10.1016/j.ecoenv.2017.09.035
 
162. Yadava P., Kaushal J., Gautam A., Parmar H., Singh I. 2016. Physiological and biochemical effects of 24-epibrassinolide on heat-stress adaptation in maize (Zea mays L). Nat. Sci. 8 : 171-179.
https://doi.org/10.4236/ns.2016.84020
 
163. Yamamoto R., Fujioka S., Iwamoto K., Demura T., Takatsuto S., Yoshida S., Fukuda H. 2007. Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant Cell Physiol. 48 (1) : 74-83.
https://doi.org/10.1093/pcp/pcl039
 
164. Yan J., Guan L., Sun Y., Zhu Y., Liu L., Lu R., Jiang M., Tan M., Zhang A. Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves. Plant Cell Physiol. 2015. 56 : 883-896
https://doi.org/10.1093/pcp/pcv014
 
165. Ye K, Li H, Ding Y, Shi Y, Song C, Gong Z, Yang S (2019) BRASSINOSTEROID-INSENSITIVE2 negatively regulates the stability of transcription factor ICE1 in response to cold stress in arabidopsis. Plant Cell. 31 (11) : 2682-2696.
https://doi.org/10.1105/tpc.19.00058
 
166. Yuan L., Yuan Y., Du J., Sun J., Guo S. 2012. Effects of 24-epibrassinolide on nitrogen metabolism in cu-cumber seedlings under Ca(NO3)2 stress. Plant Physiol. Biochem. 61 : 29-35.
https://doi.org/10.1016/j.plaphy.2012.09.004
 
167. Zhang S., Hu J., Zhang Y., Xie X.J., Knapp A. 2007. Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under sa-linity stress. Aust. J. Agr. Res. 58 : 811-815.
https://doi.org/10.1071/AR06253
 
168. Zhang S., Cai Z., Wang X. 2009. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci. USA. 106 : 1-6.
https://doi.org/10.1073/pnas.0900349106
 
169. Zhao Y., Qi Z., Berkowitz G.A. 2013. Teaching an old hormone new tricks: cytosolic Ca2+ elevation in-volvement in plant brassinosteroid signal transduction cascades. Plant Physiol. 163 : 555-565.
https://doi.org/10.1104/pp.112.213371
 
170. Zhao Y.J., Chen J.C. 2003. Studies on physiological ac-tion and application of 24-epibrassinolide in agriculture. In: Brassinosteroids (eds. Hayat S., Ahmad A.). Springer, Dordrecht, pp. 159-170.
https://doi.org/10.1007/978-94-017-0948-4_7
 
171. Zhou Y.L., Huo S.F., Wang L.T., Meng J.F., Zhang Z.W., Xi Z.M. 2018. Exogenous 24-epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings. Plant Physiol. Biochem. 130 : 555-565.
https://doi.org/10.1016/j.plaphy.2018.07.029
 
172. Zhu T., Deng X.-G., Tan W.-R., Zhou X., Luo S.-S., Han X.-Y., Zhang D.-W., Lin H.-H. 2016. Nitric oxide is involved in brassinosteroid-induced alternative respiratory pathway in Nicotiana benthamiana seedlings' response to salt stress. Physiol. Plant. 156 : 150-163.
https://doi.org/10.1111/ppl.12392