Visn. Hark. nac. agrar. univ., Ser. Biol., 2020, Issue 3 (51), p. 6-36


Yu. E. Kolupaev, Yu. V. Karpets, O. K. Polyakov

Dokuchaev Kharkiv National Agrarian University

(Kharkiv, Ukraine)


Brassinosteroids (BS) are the class of plant polyhydroxysteroids structurally related to steroid hormones of vertebrates and insects. They play a key role in the maintaining of normal plant growth both under the optimal conditions and under the influence of unfavorable environmental factors. BS bind to specific receptors and mediate their action through the cascade of signal transduction, which ultimately entails the change in the expression of thousands of nuclear genes involved in the regulation of various functions of the plant organism. In addition to specific proteins, universal signaling mediators of non-protein nature, such as calcium ions, reactive oxygen species, nitric oxide (NO), hydrogen sulfide (H2S), as well as components of lipid signaling, are involved in the transduction of BS signals. BS exert the protective effect on plants under the influence of unfavorable factors of various natures – hypo- and hyperthermia, drought, salinity, heavy metals, etc. The wide range of BS effects is probably associated with their ability to regulate the expression of key genes involved in the ensuring of plant resistance: genes encoding the transcription factors MYB/MYC, genes of family of proteins WRKY and COR, dehydrins, heat shock proteins, cytoskeletal proteins, and antioxidant enzymes. The functioning of these genes determines the implementation of plant adaptation programs to stressors of various natures. Also, the change in the BS content in plants causes the change in their hormonal status in general. The review analyzes the data on the specific protective effects of BS and genes regulated by them, involved in adaptation to certain stress factors, summarizes the information on the physiological effects of new synthetic conjugates of BS with other phytohormones, in particular with salicylic acid. It is noted that the modification of signaling pathway of BS can be one of the strategic directions for solving the problem of adaptation of cultivated plants.

Key words: brassinosteroids, signal reception, signaling mediators, phytohormones, adaptive responses



1. Avalbaev А.M., Yuldashev R.A., Shakirova F.M. 2006. Physiological effects of phytohormones brassino-steroids on plants. Uspekhi sovrem. biologii. 126 (2) : 192-200. (In Russian).
2. Allagulova C.R., Maslennikova D.R., Avalbaev A.M., Fedorova K.A., Yuldashev R.A., Shakirova F.M. 2015. Influence of 24-epibrassinolide on growth of wheat plants and the content of dehydrins under cadmium stress. Russ. J. Plant Physiol. 62 (4) : 465-471.
3. Budykina N.P., Shibaeva T.G., Titov A.F. 2012. Effects of epin extra, a synthetic analogue of 24,epibrassinolide, on stress resistance and produc-tivity of cucumber plants. Trudi Karel'skogo nauch-nogo tsentra RAN. 2 : 47-55. (In Russian).
4. Budykina N.P., Shibaeva T.G., Titov A.F. Effects of ep-in-extra on the growth, development, and yield of sweet pepper (Capsicum annuum L.) in greenhouses of northwestern Russia. Agrokhimiya. 2013. 11 : 38-44. (In Russian).
5. Vayner A.A., Kolupaev Yu.E., Khripach V.A. Separate and combined influence of 24-epibrassinolide and proline on antioxidant system of millet plants under salt stress. Fiziol. rart. i genet. 46 (5) : 428-436. (In Russian).
6. Vayner A.A., Kolupaev Yu.E., Yastreb T.O., Khripach V.A. 24-epibrassinolide induces salt tolerance of millet (Panicum miliaceum) seedlings involving reactive oxygen species. Doklady Natsional'noy akademii nauk Belarusi. 58 (4) : 67-70. (In Russian).
7. Grabovskaya N.I. 2018. Protective effect of epin on plants in the conditions of environmental pollution with lead by the example of cress (Lepidium sa-tivum). Priority Vectors for the Development of Industry and Agriculture. 1 (3) : 57-61 (in Russian).
8. Grabovskaya N.I., Babenko O.N. Protective effect of preparations containing brassinosteroids on plants exposed to environmental lead contamination: a review. J. Sib. Fed. Univ. Biol. 2020. 13 (2) : 129-163. (In Russian).
9. Dmitriev O.P., Kravchuk Zh.M. 2005. Reactive oxygen species and plant immunity. Tsitol. Genet. 39 (4) : 64-74. (In Ukrainian).
10. Efimova M.V., Hasan J.A.K., Kholodova V.P., Kuz-netsov V.V., Savchuk A.L., Litvinovskaya R.P., Khripach V.A. 2014. Physiological mechanisms of enhancing salt tolerance of oilseed rape plants with brassinosteroids. Russ. J. Plant Physiol. 61 (6) : 733-743.
11. Efimova, M.V., Khripach, V.A., Boyko, E.V., Malofiy M.K., Kolomeychuk L.V., Murgan O.K., Vidershpan A.N., Mukhamatdinova, E.A., Kuznetsov, V.V. 2018. The priming of potato plants induced by brassinosteroids reduces oxidative stress and increases salt tolerance. Doklady Biological Sciences. 478 (1) : 33-36.
12. Ilkovets I.M., Sokolovsky S.G., Night M.R., Volotovsky I.D. Phytohormonal control of the concentration of ionized Ca2+ in the cytoplasm of a plant cell. Vestsi NAN Belarusi. Ser. biol. navuk. 3 : 58-62. (In Russian).
13. Karpets Yu.V., Kolupaev Yu.E. 2018. Participation of nitric oxide in 24-epibrassinolide-induced heat re-sistance of wheat coleoptiles: functional interactions of nitric oxide with reactive oxygen species and Ca ions. Russ. J. Plant Physiol. 65 (2) : 177-185.
14. Kolupaev Yu.E., Yastreb T.O., Shvidenko N.V., Karpets Yu.V. 2012. Induction of heat resistance of wheat coleoptiles by salicylic and succinic acids: Connection of the effect with the generation and neutralization of reactive oxygen species. Appl. Biochem. Microbiol. 48 (5) : 500-505.
15. Kolupaev Yu.E., Vayner A.A., Yastreb T.O., Oboznyi A.I., Khripach V.A. 2014. The role of reactive oxygen species and calcium ions in the implementa-tion of the stressprotective effect of brassinosteroids on plant cells. Appl. Biochem. Microbiol. 50 (6) : 658-663.
16. Kolupaev Yu.E., Vayner A.A., Yastreb T.O., Oboznyi A.I., Khripach V.A. 2015. Role of Ca ions in the induction of heat-resistance of wheat coleoptiles by brassinosteroids. Ukr. Biochem. J. 87 (1) : 127-133. (In Russian).
17. Kolupaev Yu.E., Vayner A.A. 2014. Mechanisms of the stress-protective effect of brassinosteroids on plants. Agrokhimiya. 7 : 69-84. (In Russian).
18. Kolupaev Yu.E., Karpets Yu.V. 2014. Reactive oxygen species and stress signaling in plants. Ukr. Biochem. J. 86 (4) : 18-35. (In Russian).
19. Kolupaev Yu.E., Karpets Yu.V. 2019. Aktivnyye formy kisloroda, antioksidanty i ustoychivost' rasteniy k deystviyu stressorov (Reactive oxygen species, antioxidants and plants resistance to influence of stress-ors). Kyiv: Logos, 277 p.) (In Russian).
20. Kravets V.S., Kretinin S.V., Derevyanchuk M.V., S Drach. V., Litvinovska R.P., Khripach V.A. 2011.Effect of low temperatures on the level of en-dogenous brassinosteroids. Dopov. Nac. akad. nauk Ukr. 8 : 155-159. (In Russian).
21. Kravets' V.S., Derev'yanchuk M.V., Khrypach V.O. 2017. Brasynosteroyidy u rehulyatsiyi metabolizmu roslyn (Brassinosteroids in the regulation of plant metabolism) Lutsk: 112 p. (In Ukrainian).
22. Kretynin S.V., Bondarenko O.M., Kravets V.S., Khripach V.A., Kukhar V.P. 2015. Role of calcium in the response of cellular metabolism to epibrassinolide in transgenic tobacco cax1 plants. Dopov. Nac. akad. nauk Ukr. 9 : 105-112. (In Russian).
23. Lukatkin A.S., Kashtanova N.N., Duhovskis P. 2013. Influence of epibrassinolide on the thermal re-sistance of maize seedlings. Agrokhimiya. 6 : 24-31. 6 : 24-31. (In Russian).
24. Medvedev S.S. 2018. Principles of calcium signal gen-eration and transduction in plant cells. Russ. J. Plant Physiol. 65 (6) : 771-783.
25. Prusakova L.D.1, Chizhova S.I. 2005. Application of brassinosteroids under extreme conditions for plants. Agrokhimiya. 7 : 87-94. (In Russian).
26. Skaternaya T.D., Kharchenko O.V., Kretynin S.V., Kopich V.N., Litvinovskaya R.P., Chashchyna N.M., Khripach V.A., Kravets V.S. 2012. 24-epibrassinolide influence on the protein biosynthesis in maize seedlings during cold stress. Doklady NAN Belarusi. 56 (2) : 63-68. (In Russian).
27. Straltsova D.Y., Charnysh M.A., Hryvusevich P.V., Demidchik V.V. 2019. Non-genomic effects of ster-oid hormones: role of ion channels. J. Belarus State Univ. Biol. 3 : 3-12 (In Russian).
28. Titov V.N., Smyslov D.G., Dmitrieva G.A., Boloto-va O.I. 2011. Plant growth regulators as a biological factor in reducing the protective effect of preparations containing brassinosteroids level of heavy metals in a plant. Bulletin of the Orel State Agrarian University [Vestnik Orlovskogo gosudarstvennogo agrarnogo universiteta]. 4 (31) : 4-6 (In Russian).
29. Shkliarevskyi M.A., Taraban D.A., Pavlov Yu.P., Kar-pets Yu.V. 2019. Induction of nonspecific resistance of seedlings of Scotch pine by influence of 24-epibrassinolide. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (48) : 75-86. (In Ukrainian).
30. Aghdam M.S., Mohammadkhani N. 2014. Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food Bioprocess Technol. 7 (3) : 909-914.
31. Ahammed G.J., Li X., Liu A., Chen S. 2020. Brassinosteroids in plant tolerance to abiotic stress. Journal of Plant Growth Regul.
32. Ali B., Hayat S., Ahmad A. 2007. 28-homobrassinolide ameliorates the saline stress in chickpea (Cicer ari-etinum L.). Environ Exp Bot. 59 : 217-223.
33. Alyemeni M.N., Hayat S., Wijaya L., Anaji A. 2013. Foliar application of 28-homobrassinolide mitigates salinity stress by increasing the efficiency of photosynthesis in Brassica juncea. Acta Bot. Bras. 27 : 502-505.
34. An C., Mou Z. 2011.Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53 : 412-428.
35. Anuradha S., Rao S.S.R. 2001. Effect of brassinosteroids on salinity stress induced inhibition of germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul. 33 : 151-153.
36. Anuradha S., Rao S.S.R. 2003. Application of brassino-steroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regul. 40 : 29-32.
37. Anwar A., Liu Y., Dong R., Bai L., Yu X., Li Y. 2018. The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol. Res. 51 : 46.
38. Arora N., Bhardwaj R., Sharma P., Arora H.K. 2008. Effects of 28-homobrassinolide on growth, lipid pe-roxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiol. Plant. 30 : 833-839.
39. Arora D., Jain P., Singh N., Kaur H., Bhatla S.C. 2016. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radical Res. 50 : 291-303.
40. Bajguz A. 2011. Brassinosteroids - occurence and chemical structures in plants. In: Brassinosteroids: A Class of Plant Hormone (eds. Hayat S., Ahmad A.) Springer Science+Business Media B.V., pp. 1-28.
41. Bajguz A., Hayat S. 2009.Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47 : 1-8.
42. Bartoli C.G., Casalongueb C.A., Simontacchia M., Marquez-Garciac B., Foyer C.H. 2013. Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ. Exp. Bot. 94 : 73-88.
43. Bartwal A., Arora S. 2020. Brassinosteroids: molecules with myriad roles. In: Co-Evolution of Secondary Metabolites (eds. Mérillon J.-M., Ramawat K.G.). Springer Nature Switzerland A.G., pp. 869-895.
44. Baxter A., Mittler R., Suzuki N. 2014. ROS as key players in plant stress signalling. J. Exp. Bot. 65 (5) : 1229-1240.
45. Bishop G.J., Yokota T. 2001. Plants steroid hormones, brassinosteroids: current highlights of molecular as-pects on their synthesis/metabolism, transport, per-ception and response. Plant Cell Physiol. 42 (2) : 114-120.
46. Bucker-Neto L., Paiva A.L.S., Machado R.D., Arenhart R.A., Margis-Pinheiro M. 2017. Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol. 40 (suppl 1) : 373-386.
47. Cano-Delgado A., Yin Y.H., Yu C., Vafeados D., Mora-Garcia S., Cheng J.C., Nam K.H., Li J.M., Chory J. 2004. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development. 131 (21) : 5341-5351.
48. Chen Z.-Y., Wang Y.-T., Pan X.-B., Xi Z.-M. 2019. Amelioration of cold-induced oxidative stress by exogenous 24-epibrassinolide treatment in grapevine seedlings: toward regulating the ascorbate-glutathione cycle. Sci Horticult. 244 : 379-387.
49. Choudhary S.P., Yu J.-Q., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.-S.P. 2012. Benefits of brassi-nosteroid crosstalk. Trends Plant Sci. 17 (10) : 594-605.
50. Chung Y., Choe S. 2013. The regulation of brassinosteroid biosynthesis in Arabidopsis. Critical Rev. Plant Sci. 32 : 396-410.
51. Corpas F.J., Barroso J.B. 2017. Nitric oxide synthase-like activity in higher plants. Nitric Oxide. 68 : 5-6.
52. Courtois C., Besson A., Dehan J., Bourque S., Dobrowolska G., Pugin A., Wendehenne D. 2008. Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. J. Exp. Bot. 59 : 155-163.
53. Cui J.X., Zhou Y.H., Ding J.G., Xia X.J., Shi K., Chen S.C., Asami T., Chen Z., Yu J.Q. 2011. Role of nitric oxide in hydrogen peroxide-dependent in-duction of abiotic stress tolerance by brassinosteroids in cucumberpce. Plant Cell Environ. 34 : 347-358.
54. Cukor J., Rasáková N.M., Linda R., Linhart L., Gutsch M.R., Kunes I. 2018. effects of brassinosteroid application on seed germination of scots pine under standard and heat stress conditions. Baltic Forestry. 24 (1) : 60-67.
55. Demidchik V., Cuin T.A., Svistunenko D., Smith S.J., Miller A.J., Shabala S., Sokolik A., Yurin V. 2010. Arabidopsis root K+ efflux conductance acti-vated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J. Cell Sci. 123 : 1468-1479.
56. Deng X.-G., Zhu T., Zou L.-J., Han X.-Y., Zhou X., Xi D.-H., Zhang D.-W., Lin H.-H. 2016. Orchestra-tion of hydrogen peroxide and nitric oxide in brassi-nosteroid-mediated systemic virus resistance in Nicotiana benthamiana. Plant J. 85 : 478-493.
57. Derevyanchuk M.V., Grabelnyh O.I., Litvinovskaya R.P., Voinikov V.K., Sauchuk A.L., Khripach V.A., Kravets V.S. 2014. Influence of brassinosteroids on plant cell alternative respiration pathway and antioxidant systems activity under abiotic stress conditions. Biopolym. Cell. 30 (6) : 436-442.
58. Divi U.K., Rahman T., Krishna P. 2010. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology. 10 : 151-164.
59. Ekinci M., Yildirim E., Atatu A.D., Turan M. 2012. Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. HortScience. 47 : 631-636.
60. Eremina M., Unterholzner S.J., Rathnayake A.I., Castel-lanos M., Khan M., Kugler K.G., May S.T., Mayer K.F.X., Rozhon W., Poppenberger B. 2017. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc. Natl. Acad. Sci. USA. 114 (6) : 1038-1039.
61. Fariduddin Q., Khanam S., Hasan S.A., Ali B., Hayat S., Ahmad A. 2009. Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol. Plant 31 (5) : 889-897.
62. Fariduddin Q., Khalil R.R. A.E., Mir B.A., Yusuf M., Ahmad A. 2013. 24-Epibrassinolide regulates photo-synthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ. Monit. Assess. 185 : 7845-7856.
63. Farnese F.S., Menezes-Silva P.E., Gusman G.S., Oliveira J.A. 2016. When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front. Plant Sci. 7 : 471.
64. Flores T., Todd C.D., Tovar-Mendez A., Dhanoa P.K., Correa-Aragunde N., Hoyos M.E., Brownfield D.M., Mullen R.T., Lamattina L., Polacco J.C. 2008. Arginase-negative mutants of Arabidopsis exhibit in-creased nitric oxide signaling in root development. Plant Physiol. 147 : 1936-1946.
65. Foyer C.H., Noctor G. 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11 : 861-906.
66. Fridman Y., Savaldi-Goldstein S. 2013. Brassinosteroids in growth control: How, when and where. Plant Sci. 209 : 24-31.
67. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48 : 909-930.
68. Gruszka D. 2013. The brassinosteroid signaling pathway - new key players and interconnections with other signaling networks crucial for plant development and stress tolerance. Int. J. Mol. Sci. 14 : 8740-8774.
69. Gupta K.J., Kaiser W.M. 2010. Production and scavenging of nitric oxide by barley root mitochondria. Plant Cell Physiol. 51 : 576-584.
70. Gupta P., Seth C.S. 2020. Interactive role of exogenous 24 Epibrassinolide and endogenous NO in Brassica juncea L. under salinity stress: Evidence for NR-dependent NO biosynthesis. Nitric Oxide. doi:
71. Hancock J.T., Whiteman M. 2014. Hydrogen sulfide and cell signaling: Team player or referee?. Plant Physiol. Biochem. 78 : 37-42.
72. Hanin M., Brini F., Ebel C., Toda Y., Takeda S., Masmoudi K. 2011. Plant dehydrins and stress tolerance. Plant Signal. Behav. 10 : 1503-1509.
73. Hara M. 2010. The multifunctionality of dehydrins. Plant Signal. Behav. 5 : 503-508.
74. Hara M., Kondo M., Kato T. 2013. A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical reducing activities. J. Exp. Bot. 64 : 1615-1624.
75. Hartung W., Wilkinson S., Davies W.J. 1998. Factors that regulate abscisic acid concentrations at the pri-mary site of action at the guard cell. J. Exp. Bot. 49. 361-367.
76. Hasanuzzaman M., Nahar K., Fujita M. 2013. Plant response to salt stress and role of exogenous pro-tectants to mitigate salt-induced damages. In: Eco-physiology and responses of plants under salt stress (eds. Ahmad P., Azooz M.M., Prasad M.N.V.). Springer, pp. 25-87.
77. Hayat S., Alyemeni M.N., Hasan S.A. 2012. Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi Journal of Biological Sciences. 19 (3) : 325-335.
78. Hayat S., Hasan S.A., Yusuf M., Hayat Q., Ahmad A. 2010. Effect of 28-homobrassinolide on photosyn-thesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiate. Environ. Exp. Bot. 69 : 105-112.
79. Hedrich R. 2012. Ion channels in plants. Physiol. Rev. 92 : 1777-1811.
80. Houimli S.I.M., Denden M., Mouhandes B.D. 2010. Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants un-der NaCl-stress. Eurasia J. Biosci. 4 : 96-104.
81. Hu W.-H., Yan X.-H., Xiao Y.-A., Zeng J.-J., Qi H.-J., Ogweno J.O. 2013. 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci. Hortic. 150 : 232-237.
82. Janicka M., Reda M., Czyzewska K., Kabala K. 2018. Involvement of signalling molecules NO, H2O2 and H2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress. Funct. Plant Biol. 45 (4) : 428-439.
83. Jiroutova P., Oklestkova J., Strnad M. 2018. Crosstalk between Brassinosteroids and ethylene during plant growth and under abiotic stress conditions. Int. J. Mol. Sci. 19 : 3283.
84. Jeandroz S., Wipf D., Stuehr D.J., Lamattina L., Melkonian M., Tian Z., Zhu Y., Carpenter E.J., Wong G.K., Wendehenne D. 2016. Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci. Signal. 9 : re2.
85. Jiang Y.P., Huang L.F., Cheng F., Zhou Y.H., Xia X.J., Mao W.H., Shi K., Yu J.Q. 2013. Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol. Plant. 148 : 133-145.
86. Jin S.H., Li X.Q., Wang G.G., Zhu X.T. 2015. Brassinosteroids alleviate high-temperature injury in Ficus concinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. AoB Plants. 7 : plv009.
87. Johnson J.M., Reichelt M., Vadassery J., Gershenzon J., Oelmüller R. 2014. An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress. BMC Plant Biol. 14 : 162.
88. Kamuro Y., Takatsuto S. 1999. Potential application of brassinosteroids in agricultural fields. In: Brassino-steroids: Steroidal Plant Hormones (eds. Sakurai A., Yokota T., Clouse S.D.). Tokyo : Springer-Verlag : 223-241.
89. Kanwar M.K., Bhardwaj R., Arora P., Chowdhary S.P., Sharma P., Kumar S. 2012. Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere. 86 (1) : 41-49.
90. Kanwar M.K., Bhardwaj R., Chowdhary S.P., Arora P., Sharma P., Kumar S. 2013. Isolation and characteri-zation of 24-epibrassinolide from Brassica juncea L. and its effects on growth; Ni ion uptake: antioxidant defense of Brassica plants and in vitro cytotoxicity. Acta Physiol. Plant. 35 (4) : 1351-1362.
91. Kanwar M.K., Poonam, Bhardwaj R. 2015. Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L. Ecotoxicol. Environ. Saf. 115 : 119-125.
92. Kapoor D., Rattan A., Gautam V., Bhardwaj R. 2016. Alleviation of cadmium and mercury stress by sup-plementation of steroid hormone to Raphanus sativus seedlings. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 86 (3) : 661-666.
93. Karpets Yu.V., Shkliarevskyi M.A., Khripach V.A., Ko-lupaev Yu.E. 2020. State of enzymatic antioxidative system and heat resistance of wheat plantlets treated by combination of 24-epibrassinolide and NO donor. Cereal Res. Commun.
94. Kaur N., Kirat K., Saini S., Sharma I., Gantet P., Pati P.K. 2016. Reactive oxygen species generating sys-tem and brassinosteroids are linked to salt stress ad-aptation mechanisms in rice. Plant Signal. Behav. 11 : 12, e1247136.
95. Kaur N., Gupta A.K. 2005. Signal transduction pathways under abiotic stresses in plant. Curr. Sci. 88 : 1771-1780.
96. Kaya C., Ashraf M., Alyemeni M.N., Ahmad P. 2020. The role of nitrate reductase in brassinosteroid-induced endogenous nitric oxide generation to im-prove cadmium stress tolerance of pepper plants by upregulating the ascorbate-glutathione cycle. Ecotoxicol. Environ. Saf. 196 : 110483.
97. Khripach V., Zhabinskii V., De Groot A. 2000. Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 86 : 441-447.
98. Kim M.C., Chung W.S., Yun D., Cho M.J. 2009. Calcium and calmodulin-mediated regulation of gene expression in plants. Mol. Plant. 2 : 13-21.
99. Kolbert Z., Barroso J.B., Brouquisse R., Corpas F.J., Gupta K.J., Lindermayr C., Loake G.J., Palma J.M., Petřivalský M., Wendehenne D., Hancock J.T. 2019. A forty year journey: The generation and roles of NO in plants. Nitric Oxide. 93 : 53-70
100. Kolupaev Yu.E., Karpets Yu.V., Dmitriev A.P. 2015. Signal mediators in plants in response to abiotic stress: calcium, reactive oxygen and nitrogen species. Cytol. Genet. 49 (5) : 338-348.
101. Krishna P., Prasad B.D., Rahman T. 2017. Brassinosteroid action in plant abiotic stress tolerance. In: Brassinosteroids: Methods and Protocols, Methods in Molecular Biology, vol. 1564. (eds. Russinova E., Cano-Delgado A.I.). Springer Science+Business Media LLC, pp. 193-202.
102. Kulaeva O.N., Burkhanova E.A., Fedina A.B., Khokhlova V.A., Bokebayeva G.A., Vorbrodt H.M., Adam G. 1991. Effect of brassinosteroids on protein synthesis and plant-cell ultrastructure under stress conditions. Brassinosteroids (ed. Cutler H.). Washington : 141-155.
103. Lai D.W., Mao Y., Zhou H., Li F., Wu M., Zhang J., He Z., Cui W., Xie Y. 2014. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci. 225 : 117-129.
104. Li B., Zhang C., Cao B., Qin G., Wang W., Tian S. 2012. Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids. 43 (6) : 2469-2480.
105. Li Z.G., Luo L.J., Sun Y.F. 2015. Signal crosstalk be-tween nitric oxide and hydrogen sulfide may be involved in hydrogen peroxide induced thermotolerance in maize seedlings. Russ J. Plant Physiol. 62 : 507-514.
106. Li M.Q., Ahammedl G.J., Li C.X., Bao X., Yu J.Q., Huang C.L., Yin H.Q., Zhou J. 2016. Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front. Plant Sci. 7 : 13.
107. Li H., Ye K., Shi Y., Cheng J., Zhang X., Yang S. 2017. BZR1 Positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in arabidopsis. Mol. Plant. 10 (4) : 545-559.
108. Li Y., Wu Y., Liao W., Hu L., Dawuda M.M., Jin X., Tang Z., Yang J., Yu J. 2020. Nitric oxide is involved in the brassinolide-induced adventitious root development in cucumber. BMC Plant Biol. 20 (1) : 102.
109. Li Q.-F., He J.-X. 2013. Mechanisms of signaling cross-talk between brassinosteroids and gibberellins. Plant Signal Behav. 8 : e24686.
110. Li Z.-G., Xie L.-R., Li X.-J. 2015. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J. Plant Physiol. 177 : 121-127.
111. Li Q., Lancaster J.R. 2013. Chemical foundations of hydrogen sulfide biology. Nitric Oxide. 35 : 21-34.
112. Litvinovskaya R.P., Minin P.S., Raiman M.E., Zhilitskaya G. A., Kurtikova A.L., Kozharnovich K.G., Derevyanchuk M.V., Kravets V.S., Khripach V.A. 2013. Indolyl-3-acetoxy derivatives of brassi-nosteroids: synthesis and growth-regulating activity. Chem. Nat. Compd. 49 : 478-485.
113. Litvinovskaya R.P., Vayner A.A., Zhylitskaya H.A., Kolupaev Yu.E., Savachka A.P., Khripach V.A. 2016. Synthesis and stress-protective action on plants of brassinosteroid conjugates with salicylic acid. Chem. Nat. Compd. 52 : 452-457.
114. Liu Y., Hao Y., Liu Y., Huang W. 2005. Effects of wounding and exogenous jasmonic acid on the pe-roxidation of membrane lipid in pea seedlings leaves. Agricultural Sciences in China. 4 : 614-620.
115. Liu H.T., Huang W.D., Pan Q.H., Weng F.H., Zhan J.C., Liu Y., Wan S.B., Liu Y.Y. 2006. Contributions of PIP2-specific-phospholipase C and free salicylic acid to heat acclimation induced thermotolerance in pea leaves. J. Plant Physiol. 163 (4) : 405-416.
116. Liu J., Yang R., Jian N., Wei L., Ye L., Wang R., Gao H., Zheng Q. 2020. Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance. Plant Cell Environ. 43 : 1348-1359.
117. Ma Y., Shao L., Zhang W., Zheng F. 2020. Hydrogen sulfide induced by hydrogen peroxide mediates brassinosteroid-induced stomatal closure of Arabidopsis thaliana. Funct. Plant Biol.
118. Mazorra L.M., Holton N., Bishop G.J., Núñez M. 2011. Heat shock response in tomato brassinosteroid mu-tants indicates that thermotolerance is independent of brassinosteroid homeostasis. Plant Physiol. Bio-chem. 49 : 1420-1428.
119. Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. 2011. ROS signaling: the new wave?. Trends Plant Sci. 16 (6) : 300-309.
120. Munemasa S., Oda K., Watanabe-Sugimoto M., Naka-mura Y., Shimoishi Y., Murata Y. 2007. The coro-natine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 143 : 1398-1407.
121. Mur L.A.J., Mandon J., Persijn S., Cristescu S.M., Moshkov I.E., Novikova G.V., Hall M.A., Harren F.J.M., Hebelstrup K.H., Gupta K.J. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants. 2013. 5 : pls052.
122. Nawaz F., Naeem M., Zulfiqar B., Akram A., Ash-raf M.Y., Raheel M., Shabbir R.N., Hussain R.A., Anwar I., Aurangzaib M. 2017. Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review. Environ Sci Pollut Res. 24 (19) : 15959-15975.
123. Neill S., Bright J., Desikan R., Hancock J., Harrison J., Wilson I. 2008. Nitric oxide evolution and percep-tion. J. Exp. Bot. 59 : 25-35.
124. Nie W.F. Wang M.-M., Xia X.-J., Zhou Y.-H., Shi K., Chen Z., Yu J.Q. 2013. Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant Cell Environ. 36 : 789-803.
125. Nolan T., Vukasinovic N., Liu D., Russinova E., Yin Y. 2020. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell. 32 : 295-318.
126. Ogasawara Y., Kaya H., Hiraoka G., Yumoto F., Ki-mura S., Kadota Y., Hishinuma H., Senzaki E., Yamagoe S., Nagata K., Nara M., Suzuki K., Tano-kura M., Kuchitsu K. 2008. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem. 283 : 8885-8892.
127. Ogweno J.O., Song X.S., Shi K., Hu W.H., Mao W. H., Zhou Y.H. Yu J.Q., Nogues S. 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul. 27 : 49-57.
128. Peleg-Grossman S., Melamed-Book N., Levine A. 2012. ROS production during symbiotic infection sup-presses pathogenesis-related gene expression. Plant Signaling Behav. 7 : 409-415.
129. Petridis A., Doll S., Nichelmann L., Bilger W., Mock H.-P. 2016. Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation. New Phytol. 211 : 912-925.
130. Petrov V.D., Breusegem F.V. 2012. Hydrogen peroxide - a central hub for information flow in plant cell. AoB Plants. pls014.
131. Pitzschke A, Hirt H. 2006. Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol. 141 (2) : 351-356.
132. Planas-Riverola A., Gupta A., Betegon-Putze I., Bosch N., Ibanes M., Cano-Delgado A.I. 2019. Brassinosteroid signaling in plant development and adaptation to stress. Development. 146. dev151894.
133. Rady M.M. 2011. Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci. Horticul. 129 (2) : 232-237.
134. Rajewska I., Talarek M., Bajguz A. 2016. Brassinosteroids and response of plants to heavy metals action. Front. Plant Sci. 7 : 629.
135. Rattan A.,·Kapoor D., Kapoor N.,·Bhardwaj R., Shar-ma A. 2020. Brassinosteroids Regulate Functional Components of Antioxidative Defense System in Salt Stressed Maize Seedlings. J. Plant Growth Regul.
136. Reyes Y., Martinez L., DellAmico J., Nunez M., Pieters A.J. 2015. Reversion of deleterious effects of salt stress by activation of ROS detoxifying enzymes via foliar application of 24-epibrassinolide in rice seedlings. Theor. Exp. Plant Physiol. 27 : 31-40.
137. Ribeiro D.G.S. da Silva B.R.S.,·Lobato A.K.S. 2019. Brassinosteroids induce tolerance to water deficit in soybean seedlings: contributions linked to root anatomy and antioxidant enzymes. Acta Physiol. Plant. 41 : 82.
138. Sadeghi F., Shekafandeh A. 2014. Effect of 24-epibrassinolide on salinity-induced changes in loquat (Eriobotrya japonica Lindl). Journal of Applied Botany and Food Quality. 87 : 182-189.
139. Shahid M.A., Pervez M.A., Balal R.M., Mattson N.S., Rashid A., Ahmad R, Ayyub C.M., Abbas T. 2011. Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Aust. J. Crop. Sci. 5 : 500-510.
140. Sharma I., Pati P. K., Bhardwaj R. 2011. Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L. Acta Physiol. Plant. 33 (5) : 1723-1735.
141. Sharma P., Kumar A., Bhardwaj R. 2016. Plant steroidal hormone epibrassinolide regulate heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ. Exp. Bot. 122 : 1-9.
142. Sharma A., Kumar V., Kumar R., Kohli S.K., Yadav P., Kapoor D., Khan E.A., Parihar R.D.N, Shahzad B., Thukral A.K., Bhardwaj R. 2020. Role of Plant Growth Regulators in Ameliorating Heavy Metal Caused Oxidative Stress in Plants: An Update. In: Metal Toxicity in Higher Plants (eds: Landi M., Shemet S.A., Fedenko V.S.). Nova Science Publish-ers, pp. 117-136.
143. Shimada Y., Goda H., Nakamura A., Takatsuto S., Fuji-oka S., Yoshida S. 2003. Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol. 131 (1) : 287-297.
144. Singh I., Shono M. 2005. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul. 47 : 111-119.
145. Sirohi G., Kapoor M. 2020. Brassinosteroids in lowering abiotic stress-mediated damages. In: Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives (eds. Roychoudhury A.,Tripathi D.K.) John Wiley & Sons Ltd., pp. 318-326
146. Soliman M., Elkelish A., Souad T., Alhaithloul H., Muhammad F. 2020. Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. Physiol. Mol. Biol. Plants.
147. Straltsova D., Chykun P., Subramaniam S., Sosan A., Kolbanov D., Sokolik A., Demidchik V. 2015. Cation channels are involved in brassinosteroid signalling in higher plants. Steroids. 97 : 98-106.
148. Swamy K. N., Anuradha S., Ramakrishna B., Siddu-lu N., Rao S.S.R. 2011. Cadmium toxicity is diminished by 24-epibrassinolide in seedlings of Trigonella foenumgraecum L. Genetics Plant Physiol. 1 (3-4) : 163-175.
149. Symons G.M., Reid J.B. 2004. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol. 135 (4) : 2196-2206.
150. Tabur S., Demir K. 2009. Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Regul. 58 : 119-123.
151. Talaat N.B., Shawky B.T. 2012. 24-epibrassinolide ameliorates the saline stress and improves the productivity of wheat (Triticum aestivum L.). Environ. Exp. Bot. 82 : 80-88.
152. Talaat N.B., Shawky B.T. 2013. 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant in wheat (Triticum aestivum L.). Acta Physiol. Plant. 35 : 729-740.
153. Tanveer M., Shahzad B., Sharma A., Biju S., Bhardwaj R. 2018. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A re-view. Plant Physiol. Biochem. 130 : 69-79.
154. Thussagunpanit J., Kanapol J., Lily K., Wi Stith C., Porn P., Sureeporn S., Apichart S. 2014. Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J. Plant Growth Regul. 34 : 320-331.
155. Tian B., Zhang Y., Jin Z., Liu Z., Pei Y. 2017. Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet. Frontiers in Bioscience (Landmark). 22 : 530-538.
156. Vázquez M.N., Guerrero Y.R., de la Noval W.T., González L.M., Zullo M.A. 2019. T. Advances on exogenous applications of brassinosteroids and their analogs to enhance plant tolerance to salinity: A review. Austr. J. Crop Sci. 13 (01) : 115-121.
157. Wang H., Ji F., Zhang Y., Hou J., Liu W., Huang J., Liang W. 2019a. Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium tox-icity. Plant Cell Environ. 42 (8) : 2340-2356.
158. Wang Y.-T., Chen Z.Y., Jiang Y., Duan B,-B,, Xi Z,-M, 2019b. Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.). Sci. Hortic. 256 : 108596.
159. Wilen R.W., Sacco M., Gusta L.V., Krishna P. 1995. Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus inermis) cell cultures. Physiol. Plant. 95 : 195-202.
160. Xia X.J., Wang Y.J., Zhou Y.H., Tao Y., Mao W.H., Shi K., Asami T., Chen Z., Yu J.Q. 2009. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol. 150 : 801-814.
161. Yadav P., Kaur R., Kanwar M.K., Sharma A., Verma V., Sirhindi G., Bhardwaj R. 2018. Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings. Ecotoxicol. Environ. Saf. 147 : 725-734.
162. Yadava P., Kaushal J., Gautam A., Parmar H., Singh I. 2016. Physiological and biochemical effects of 24-epibrassinolide on heat-stress adaptation in maize (Zea mays L). Nat. Sci. 8 : 171-179.
163. Yamamoto R., Fujioka S., Iwamoto K., Demura T., Takatsuto S., Yoshida S., Fukuda H. 2007. Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant Cell Physiol. 48 (1) : 74-83.
164. Yan J., Guan L., Sun Y., Zhu Y., Liu L., Lu R., Jiang M., Tan M., Zhang A. Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves. Plant Cell Physiol. 2015. 56 : 883-896
165. Ye K, Li H, Ding Y, Shi Y, Song C, Gong Z, Yang S (2019) BRASSINOSTEROID-INSENSITIVE2 negatively regulates the stability of transcription factor ICE1 in response to cold stress in arabidopsis. Plant Cell. 31 (11) : 2682-2696.
166. Yuan L., Yuan Y., Du J., Sun J., Guo S. 2012. Effects of 24-epibrassinolide on nitrogen metabolism in cu-cumber seedlings under Ca(NO3)2 stress. Plant Physiol. Biochem. 61 : 29-35.
167. Zhang S., Hu J., Zhang Y., Xie X.J., Knapp A. 2007. Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under sa-linity stress. Aust. J. Agr. Res. 58 : 811-815.
168. Zhang S., Cai Z., Wang X. 2009. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci. USA. 106 : 1-6.
169. Zhao Y., Qi Z., Berkowitz G.A. 2013. Teaching an old hormone new tricks: cytosolic Ca2+ elevation in-volvement in plant brassinosteroid signal transduction cascades. Plant Physiol. 163 : 555-565.
170. Zhao Y.J., Chen J.C. 2003. Studies on physiological ac-tion and application of 24-epibrassinolide in agriculture. In: Brassinosteroids (eds. Hayat S., Ahmad A.). Springer, Dordrecht, pp. 159-170.
171. Zhou Y.L., Huo S.F., Wang L.T., Meng J.F., Zhang Z.W., Xi Z.M. 2018. Exogenous 24-epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings. Plant Physiol. Biochem. 130 : 555-565.
172. Zhu T., Deng X.-G., Tan W.-R., Zhou X., Luo S.-S., Han X.-Y., Zhang D.-W., Lin H.-H. 2016. Nitric oxide is involved in brassinosteroid-induced alternative respiratory pathway in Nicotiana benthamiana seedlings' response to salt stress. Physiol. Plant. 156 : 150-163.