Visn. Hark. nac. agrar. univ., Ser. Biol., 2020, Issue 2 (50), p. 83-92


https://doi.org/10.35550/vbio2020.02.083



ABSCISIC AND INDOL-3-ACETIC ACIDS IN Triticum spelta L. AFTER HEAT STRESS AND DURING RECOVERY PERIOD


I. V. Kosakivska, L. V. Voytenko, M. M. Shcherbatiuk, V. A. Vasjuk

Kholodny Institute of Botany
of National Academy of Sciences of Ukraine
(Kyiv, Ukraine)

E-mail: irynakosakivska@gmail.com


We analyzed the effect of simulated heat stress (+ 40°C, 2 h) on endogenous abscisic (ABA) and indole-3-acetic (IAA) acids accumulation and distribution in 14-day-old wheat Triticum spelta L. cultivar Frankenkorn and on the 21st day after recovery. In the control conditions, ABA and IAA were found to dominate in the shoots. During growth on the 21st day, the content of IAA in the roots doubled, while ABA accumulated mainly in the shoots. After hyperthermia, the content of endogenous ABA in the shoots and roots increased 1,8 and 1.4 times, respectively, and amounted to 42,5 and 22,8 ng/g of fresh weight, while the content of IAA decreased 2,3 and 1,3 times and amounted to 24,8 and 6,4 ng/g of fresh weight. During the recovery period on the 21st day, level of endogenous ABA in shoots increased by 39,3%, in the roots – by 8,3%. Concentration of the hormone in the shoots in the post-stress period did not reach the control values, but in the roots – exceeded 20.1%. A decrease in the content of endogenous IAA by 25,4% during the recovery period was observed in the shoots, while in the roots, on the contrary, the hormone content increased by 60,9%, but was lower than control. Thus, after the short-term hyperthermia the pattern of ABA and IAA accumulation and distribution in Triticum spelta, like in the related species Triticum aestivum L. cultivar Podolyanka, had different directions: ABA content increased and that of IAA decreased, especially in the shoots, and the lowest IAAs were found in the roots. The functional interaction of ABA and IAA under heat stress and after recovery is discussed. The obtained results revealed similarities and differences in the response of two wheat species` phytohormonal system to a short-term hyperthermia and confirmed that changes in the balance and localization of ABA and IAA are involved in the formation of adaptive strategy.


Key words: Triticum spelta, abscisic acid, indol-3-acetic acid, heat stress, recovery

 


REFERENCES


1. Babenko L.M., Rozhkov R.V., Pariy Ya.F., Pariy M.F., Vodka M.V., Kosakisvska I.V. 2017. Triticum di-coccum (Schrank) Schuebl.: origin, biological char-acteristics and perspectives of use in breeding and agriculture. Visn. Hark. nac. agrar. univ. Ser. Biol. 2 (41): 92-102. (In Ukrainian).
https://doi.org/10.35550/vbio2017.02.092
 
2. Babenko L.M., Hospodarenko H.M., Rozhkov R.V., Pariy Y.F., Pariy M.F., Babenko A.V., Kosakivska I.V. 2018. Triticum spelta: Origin, biological characteristics and perspectives for use in breeding and agriculture. Regulatory Mechanisms in Biosystems. 9 (2) : 250-257. (In Ukrainian).
https://doi.org/10.15421/021837
 
3. Voytenko L.V., Kosakivska I.V. 2016. Polyfunctional phytohormone abscisic acid. Visn. Hark. nac. agrar. univ. Ser. Biol. 1 (37): 27-41 (In Ukrainian).
 
4. Horn E. 2008. Better than Wheat, but ... Farmers Gospodarstvo. 4 (372). 21 p. (In Russian).
 
5. Gospodarenko G.M., Kostogryz P.V., Lyubich V.V., Pariy M.F., Poltoretsky I.O. 2016. Pshenytsya spelta (Wheat spelta). Kyiv : Stik groups Ukraine : 300 p. (In Ukrainian).
 
6. Zhukovsky P.M. 1971. Kul'turnyye rasteniya i ikh sorodichi (Cultivated plants and their relatives). Len-ingrad : Kolos. 752 p. (In Russian).
 
7. Kosakivska I.V. 2007. Ecological direction in plant physiology: achievements and prospects. Fisiol. Bi-ochem. Cult. Rast. 39 (4): 279-290. (In Ukrainian).
 
8. Kosakisvska I.V., Babenko L.M., Vasyuk V.A., Voytenko L.V. 2017. Hyperthermia and ground drought effects on growth, content of photosynthetic pigments and epidermis microstructure in leaf of Triti-cum spelta L. Visn. Hark. nac. agrar. univ. Ser. Biol. 3 (42) : 81-91 (In Ukrainian).
https://doi.org/10.35550/vbio2017.03.081
 
9. Kosakivska I.V., Voytenko L.V., Vasyuk V.A., Vedenichova N.P., Babenko L.M., Shcherbatyuk M.M. 2019a. Phytohormonal regulation of seed germination. Fisiol. rast. genet. 51(3): 187-206 (In Ukrainian).
https://doi.org/10.15407/frg2019.03.187
 
10. Kosakivska I.V., Vasyuk V.A., Voytenko L.V. 2019b. Effect of exogenous abscisic acid on morphological characteristics of winter wheat and spelt under hyperthermia. Fisiol. rast. genet. 51 (4) : 324-337. (In Ukrainian).
https://doi.org/10.15407/frg2019.04.324
 
11. Kosakivska І.V., Voytenko L.V., Shcherbatiuk M.M., Vasjuk V.A. 2020. Dynamics and distribution of abscisic acid and indol-3-acetic acid in Triticum aestivum organs after shorttem hyperthermia and during restoration. Visn. Hark. nac. agrar. univ. Ser. Biol. 1 (49): 62-71. (In Ukrainian).
https://doi.org/10.35550/vbio2020.01.062
 
12. Olyunina L.N., Labyntseva O.M., Kuvatova A.G. 1999. Changes in the spectrum of free and conjugated forms of indol-3-acetic acid under the action of exogenous IAA on wheat seedlings. Vestn. Nizhego-rodskogo un-ta. Ser. Biologiya.1: 109-112. (In Russian).
 
13. Titov A.F., Talanova V.V. Ustoychivost' rasteniy i fitogormony (Resistance of plants and phytohormones.). Petrozavodsk: Karelian Scientific Center of the Russian Academy of Sciences. 206 p. (In Russian).
 
14. Tverdokhlib O.V., Boguslavsky R.L. 2012. Species diversity of wheat, directions and prospects of its use. Coll. Science. Against Umansk. Nat. Univer. Horticult. 80 (1): 37-47. (In Ukrainian).
 
15. Shelepov V.V., Malasay V.M., Penzev A.F., Kochmarskiy V.S., Shelepov A.V. 2004. Morfologiya, bi-ologiya, khozyaystvennaya tsennost' pshenitsy (Morphology, biology, economic value of wheat). Mironovka. 524 p. (In Russian).
 
16. Boursiac Y., Leran S., Corratge-Faillie C., Gojon A., Krouk G., Lacombe B. 2013. ABA transport and transporters. Trends Plant Sci. 18 (6): 325-333.
https://doi.org/10.1016/j.tplants.2013.01.007
 
17. Cossani C.M., Reynolds M.P. 2012. Physiological traits for improving heat tolerance in wheat. Plant Physiol. 160 : 1710-1718.
https://doi.org/10.1104/pp.112.207753
 
18. Dobrev P.I., Vankova R. 2012. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. In: Plant Salt Tolerance. Methods in Molecular Biology (Methods and Protocols). Eds. Shabala S. et al. Humana Press: 913 : 2251-2261.
https://doi.org/10.1007/978-1-61779-986-0_17
 
19. Du H., Wu N., Chang Yu, Li X., Xiao J., Xiong L. 2013. Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol. 83 : 475-488.
https://doi.org/10.1007/s11103-013-0103-7
 
20. Geiger D., Maierhofer T., Al-Rasheid K.A., Scherzer S., Mumm P., Liese A., Ache P., Wellmann C., Marten I., Grill E., Romeis T., Hedrich R. 2011. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal. 4 : ra32.
https://doi.org/10.1126/scisignal.2001346
 
21. Harrison M.A. 2012. Cross-talk between phytohormone signaling pathways under both optimal and stressful environmental conditions. In: Phytohormones and Abiotic Stress Tolerance in Plant. Eds.N.A. Khan, R. Nazar, N. Iqbal, N.A. Anjum. Berlin, Heidelberg : Springer-Verlag : 49-76.
https://doi.org/10.1007/978-3-642-25829-9_2
 
22. Kohli A., Sreenivasulu N., Lakshmanan P., Kumar P.P. 2013. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep. 32 : 945-957.
https://doi.org/10.1007/s00299-013-1461-y
 
23. Korver R.A., Koevoets I.T., Testerink C. Out of shape during stress: a key role for auxin. Trends Plant Sci. 2018. 23 (9) : 783-793.
https://doi.org/10.1016/j.tplants.2018.05.011
 
24. Kosakivska I.V., Vasyuk V.A., Voytenko L.V., Shcher-batiuk M.M., Romanenko K.O., Babenko L.M. 2020. Endogenous phytohormones of fern Polystichum aculeatum (L.) Roth gametophytes at different stages of morphogenesis in vitro culture. Cytol. Genet. 54 (1) : 23-30.
https://doi.org/10.3103/S0095452720010089
 
25. Ljung K., Bhalerao R.P., Sandberg G. 2001. Sites and homeostatic control of auxin biosynthesis in Ara-bidopsis during vegetative growth. Plant J. 28: 465-474.
https://doi.org/10.1046/j.1365-313X.2001.01173.x
 
26. Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Ka-waide H., Natsume M., Hanada A., Yaeno T., Shi-rasu K., Yao H., McSteen P., Zhao Y., Hayashi K-I., Kamiya Y., Kasahara H. 2011. The main auxin bio-synthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA. 108 : 18512-18517.
https://doi.org/10.1073/pnas.1108434108
 
27. Maurel C., Verdoucq L., Luu D.T., Santoni V. 2008. Plant aquaporins: membrane channels with multiple integrated functions. Annu. Rev. Plant Biol. 59 : 595-624.
https://doi.org/10.1146/annurev.arplant.59.032607.092734
 
28. McAdam S.A., Brodribb T.J., Ross J.J. 2016. Shoot-derived abscisic acid promotes root growth. Plant Cell Environ. 39: 652-659.
https://doi.org/10.1111/pce.12669
 
29. Sadok W., Schoppach R. 2019. Potential involvement of root auxins in drought tolerance by modulating nocturnal and daytime water use in wheat. Ann. Bot. 124. (6) : 969-978.
https://doi.org/10.1093/aob/mcz023
 
30. Sharifi P., Mohammadkhani N. 2016. Effects of drought stress on photosynthesis factors in wheat genotypes during anthesis. Cereal Res. Commun. 44 : 229-239.
https://doi.org/10.1556/0806.43.2015.054
 
31. Van Emden H.F. 2008. Statistics for terrified biologists. Blackwell, Oxford. http://doi: org/10.1007/s11099-011-0058-3
 
32. Vishwakarma K., Upadhyay N., Kumar N., Yadav G., Singh J., Mishra R., Kumar Vivek, Verma R., Upadhyay R.G., Pandey M., Sharma S. 2017. Ab-scisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front. Plant Sci. 8.
https://doi.org/10.3389/fpls.2017.00161
 
33. Wang Y., Zhang T., Wang R., Zhao Y. Recent advances in auxin research in rice and their implications for crop improvement. J. Exp. Bot. 2017. 69 (2) : 255-263.
https://doi.org/10.1093/jxb/erx228
 
34. Xu W., Jia L., Shi W., Liang J., Zhou F., Li Q., Zhang J. 2013. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol. 197 (1) : 139-150.
https://doi.org/10.1111/nph.12004