Visn. Hark. nac. agrar. univ., Ser. Biol., 2020, Issue 2 (50), p. 54-69


N. P. Vedenicheva, І. V. Kosakivska

Kholodny Institute of Botany
of National Academy of Sciences of Ukraine
(Kyiv, Ukraine)


Fungi play an important role in functioning of ecosystems, and are of great practical value as food and biotechnological subjects. At the same time, they are cause of many serious diseases that are very difficult to deal with. Mushrooms of different taxonomic and trophic groups are capable of producing phytohormones, in particular cytokinins. Studies of fungal cytokinins were started half a century ago, but there is still no clear opinion on the functions they perform in growth and development of these organisms. The review analyzes data obtained over the years regarding results of studying qualitative composition of cytokinins synthesized by fungi, exogenous influence of hormones on growth of fungi in culture and in situ, changes in physiology and metabolism of fungi due to genetic transformations related to cytokinins. Most fungi exist in close interaction with plants, forming associations both friendly (symbiosis) and hostile (parasitism). In both cases, they convert a host plant metabolism in their favor by effector substances, which include cytokinins. For the purpose of plant damage, fungi of a parasitic nature are manipulated by both their own genes for cytokinin biosynthesis and metabolism, and by the corresponding genes of host plant. Manifestations of such interaction depend on the nature of pathogen and its strategy, as well as the reactivity of immune system of an occupied organism. In study of symbiotic relationships of fungi and plants, in particular formation of arbuscular mycorrhiza, some contradictory data was obtained, which testify to the indirect action of cytokinins. The role of cytokinins in development of macromycetes, which constitute an unsystematic group of fungi capable of forming macroscopic fruiting bodies, is discussed separately. Cytokinins have been found both in vegetative mycelium and carpophores of macromycetes. The patterns of their dynamics allow us to consider hormones of this class as potential regulators of mushroom growth. In general, cytokinins of fungi have been studied insufficiently. Understanding of mechanisms of fungi development and identification of substances that can control them would improve biotechnology using fungi as raw materials for medicine and agricultural production.

Key words: cytokinins, fungi, parasitic fungi, mycorrhiza, macromycetes



1. Al-Maali G.A., Vedenicheva N.P., Bisko N.A., Kosakivska I.V. 2019. Effect of microelements on cytokinins content in mycelial biomass of medicinal mushroom Trametes versicolor (Polyporaceae, Basidiomycota). Ukr. Bot. J. 76 (1) : 71-78. (In Ukrainian).
2. Vedenicheva N.P., Kosakivska I.V. 2017. Tsytokininy yak rehulyatory ontohenezu roslyn za riznykh umov zrostannya (Cytokinins as regulators of plant ontogenesis under different growth conditions). Kyiv : Nash Format : 200 p. (In Ukrainian).
3. Adolfsson L., Nziengui H., Abreu I.N., Šimura J., Beebo A., Herdean A., Aboalizadeh J., Šikora J., Moritz T., Novak., Ljung K., Schoefs B., Spetea C. 2017. Enhanced secondary and hormone metabolism in leaves of arbuscular mycorrhizal Medicago truncatula. Plant Physiol. 175 : 392-411.
4. Allen M.F., Moore T.S.Jr., Christensen M. 1980. Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Can. J. Bot. 58 : 371-374.
5. Aloni R., Aloni E., Langhans M., Ullrich C.I. 2006. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 97 (5) : 883-893.
6. Akagi A., Fukushima S., Okada K., Jiang C.-J., Yoshida R., Nakayama A., Shimono M., Sugano S., Yamane H., Takatsuji H. 2014. WRKY45-dependent priming of diterpenoid phytoalexin biosynthesis in rice and the role of cytokinin in triggering the reaction. Plant Mol. Biol. 86 (1-2) : 171-183.
7. Akhtar S.S., Mekureyaw M.F., Pandey C., Roitsch T. 2020. Role of cytokinins for interactions of plants with microbial pathogens and pest insect. Front. Plant Sci. 10 : 1777.
8. Angra-Sharma R., Sharma D.K. 1999. Cytokinins in pathogenesis and disease resistance of Pyrenophora teres-barley and Dreschslera maydis-maize interactions during early stages of infection. Mycopathologia. 148 : 87-95.
9. Argueso C.T., Ferreira F.J., Epple P., To J.P.C., Hutchison C.E., Schaller G.E., Dangl J.L., Kieber J.J. 2012. Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet. 8 (1) : e1002448.
10. Babosha A.V. 2009. Regulation of resistance and susceptibility in wheat-powdery mildew pathosystem with exogenous cytokinins. J. Plant Physiol. 166 (17) : 1892-1903.
11. Barea J.M., Azcón-Aguilar C. 1982. Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl. Environ. Microbiol. 43 : 810-813.
12. Barker S.J., Tagu D. 2000. The roles of auxins and cytokinins in mycorrhizal symbioses. J. Plant Growth Regul. 19 : 144-154.
13. Bedini A., Mercy L., Schneider C., Franken P., Lucic-Mercy E. 2018. Unraveling the initial plant hormone signaling, metabolic mechanisms and plant defense triggering the endomycorrhizal symbiosis behavior. Front. Plant Sci. 9 : 1800.
14. Behr M., Motyka V., Weihmann F., Malbeck J., Deising H.B., Wirsel S.G.R. 2012. Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Molecular Plant - Microbe Interactions. 25 : 1073-1082.
15. Blum A., Benfiel, A.H., Sorenseb J.L., Nielsen M.R., Bachleitner S., Studt L., Beccari G., Covarelli L., Batley J., Gardiner D.M. 2019. Regulation of a novel Fusarium cytokinin in Fusarium pseudograminearum. Fungal Biol. 123 (3) : 255-266.
16. Bompadre M.J., Fernandez Bidondo L., Silvani V.A., Colombo R., Pérgola M., Pardo A.G., Godeas A.M. 2015. Combined effects of arbuscular mycorrhizal fungi and exogenous cytokinins on pomegranate (Punica granatum) under two contrasting water availability conditions. Symbiosis. 65 : 55-63.
17. Braaksma A., Schaap D.J., Donkers J.W., Schip-perC.M.A. 2001. Effect of cytokinin on cap opening in Agaricus bisporus during storage. Postharvest Biol. Technol. 23 : 171-173.
18. Bürger M., Chory J. 2019. Stressed out about hormones: how plants orchestrate immunity. Cell Host Microbe. 26 (2) : 163-172.
19. Cao J., Yang C., Li L., Jiang L., Wu Y., Wu C., Bu Q., Xia G., Liu X., Luo Y., Liu J. 2016. Rice plasma membrane proteomics reveals Magnaporthe oryzae promotes susceptibility by sequential activation of host hormone signaling pathways. Molecular Plant-Microbe Interact. 29 (11) : 902-913.
20. Castillo G., Torrecillas A., Nogueiras C., Michelena G., Sánchez-Bravo J., Acosta M. 2014. Simultaneous quantification of phytohormones in fermentation extracts of Botryodiplodia theobromae by liquid chromatography-electrospray tandem mass spectrometry. World J. Microbiol. Biotechnol. 30 : 1937-1946.
21. Chanclud E., Kisiala A., Emery N.R., Chalvon V., Ducasse A., Romiti-Michel C., Gravot A., Kroj T., Morel J.B. 2016. Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog. 12 : e1005457.
22. Chanclud E., Morel J-B. 2016. Plant hormones: a fungal point of view. Mol. Plant Pathol. 17 (8) : 1289-1297.
23. Chang S.T., Wasser S.P. 2018. Current and future research trends in agricultural and biomedicial applications of medicinal mushrooms and mushroom products. Int. J. Med. Mushrooms. 20 (12) : 1121-1133.
24. Cosme M., Wurst S. 2013. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biol. Biochem. 57 : 436-443.
25. Cosme M., Ramireddy E., Franken P., Schmulling T., Wurst S. 2016. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis. Mycorrhiza. 26 : 709-720.
26. Crafts C.B., Miller C.O. 1974. Detection and identification of cytokinins produced by mycorrhizal fungi. Plant Physiol. 54 : 586-588.
27. Das D., Gutjahr C. 2019. Role of phytohormones in arbuscular mycorrhiza development, In: The Model Legume Medicago truncatula. Hoboken, N.J. : John Wiley and Sons Ltd : 485-500.
28. Dodueva I., Lebedeva M., Kuznetcova K., Gancheva M., Paponova S., Lutova L. 2020. Plant tumors: a hundred years of study. Planta. 251 :
29. Dua I.S., Jandaik C.L. 1979. Cytokinins in two cultivated edible mushrooms. Scientia Horticulturae. 10 : 301-304.
30. Fernández Suárez K., Pérez Ortega E., Medina García L.R. 2015. The kinetin riboside as in vitro stimulator of Glomus clarum spores germination. Cultivos Trop. 36 : 45-49.
31. Fonseca S., Radhakrishnan D., Prasad K., Chini A. 2018. Fungal production and manipulation of plant hormones. Curr. Med. Chem. 25 : 253.
32. Foo E., McAdam E.L., Weller J.L., Reid J.B. 2016. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. J. Exp. Bot. 67 (8) : 2413-2424.
33. Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. 2011. Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 62 (8) : 2431-2452.
34. Fusconi A. 2014. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exsudates, phosphate sugars and hormones play in lateral root formation?. Ann. Bot. 563 (113) : 19-33.
35. Goh D.M., Cosme M., Kisiala A.B., Mulholland S., Said Z.M.F., Spichal L., Emery R.J.N., Declerck S., Guinel F.C. 2019. A stimulatory role for cytokinin in the arbuscular mycorrhizal symbiosis of pea. Front. Plant Sci. 10 : 262.
36. Guha A.K., Banerjee A.B. 1974. Effect of indole-3-acetic acid and kinetin on submerged growth of Agaricus bisporus. Acta Microbiol. Pol. 6 : 133-134.
37. Hao Z., Xie W., Chen B. 2019. Arbuscular mycorrhizal symbiosis affects plant immunity to viral infection and accumulation. Viruses. 11 (6) : 534.
38. Hinsch J., Vrabka J., Oeser B., Novák O., Galuszka P., Tudzynski P. 2015. De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environ. Microbiol. 17 : 2935-2951.
39. Hinsch J., Galuszka P., Tudzynski P. 2016. Functional characterization of the first filamentous fungal tRNA-isopentenyltransferase and its role in the virulence of Claviceps purpurea. New Phytolt. 211 : 980-992.
40. Hyde K.D., Xu J., Rapior S., Jeewon R., Lumyong S., Niegro A.G.T, Stadler M. 2019. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity. 97 : 1-136.
41. Janitor A., Vizarova G. 1994. Production of abscisic acid and cytokinins in static liquid culture by Schizophyllum commune. Czech-Mycology. 474 (4) : 293-302.
42. Jiang C.J., Shimono M., Sugano S., Kojima M., Liu X., Inoue H., Sakakibara H., Takatsuji H. 2013. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol. Plant-Microbe Interact. 26 : 287-296.
43. Jones J.M., Clairmont L., Macdonald E.S., Weiner C.A., Emery R.J., Guinel F.C. 2015. E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels. J. Exp. Bot. 66 : 4047-4059.
44. Khan N., Bano A., Ali S., Babar M.A. 2020. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul. 90 : 189-203.
45. Kieber J.J., Schaller E. 2018. Cytokinin signaling in plant development. Development. 145 : dev149344
46. Kind S., Hinsch J., Vrabka J., Hradilová M., Majeská-Čudejková M., Tudzynski P., Galuszka P. 2018. Manipulation of cytokinin level in the ergot fungus Claviceps purpurea emphasizes its contribution to virulence. Curr. Genet. 64 (6) : 1303-1319.
47. Kovač M., Žel J. 1995. The effect of aluminum on cytokinins in the mycelia of Amanita muscaria. J. Plant Growth Regul. 14 : 117-120.
48. Kraigher H., Grayling A., Wang T.L., Hanke D.E. 1991. Cytokinin production by two ectomycorrhizal fungi in liquid culture. Phytochem. 30 : 2249-2254.
49. Laffont C., Rey T., André O., Novero M., Kazmierczak T., Debellé F., Bonfante P., Jacqut C., Frugier F. 2015. The CRE1 cytokinin path-way is differentially recruited depending on Medicago truncatula root environments and negatively regulates resistance to a pathogen. PLoSOne 10 : e0116819.
50. Liao D., Wang S., Cui M., Liu J., Chen A., Xu G. 2018. Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. Int. J. Mol. Sci. 19 : 3146.
51. Morrison E.N., Emery R.N., Saville B.J. 2015a. Phytohormone involvement in the Ustilago maydis-Zea mays pathosystem: relationships between abscisic acid and cytokinin levels and strain virulence in infected cob tissue. PLoS ONE. 10 (6) : e0130945.
52. Morrison E.N., Knowles S., Hayward A., Thorn R.G., Saville B.J., Emery R.J.N. 2015b. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis. Mycologia. 107. 245-257.
53. Morrison E.N., Emery R.J.N., Saville B.J. 2017. Fungal derived cytokinins are necessary for normal Ustilago maydis infection of maize. Plant Pathol. 66 : 726-742.
54. Mukhopadhyay R., Chatterjee S., Chatterjee B.P., Guha A.K. 2005. Enhancement of biomass production of edible mushroom Pleurotus sajor-caju grown in whey by plant growth hormones. Process Biochemistry. 40 : 1241-1244.
55. Murai N. 2014. Review: Plant growth hormone cytokinins control the crop seed yield. Amer. J. Plant Sci. 5 : 2178-2187.
56. Murphy A.M., Pryce-Jones E., Johnstone K., Ashby A.M. 1997. Comparison of cytokinin production in vitro by Pyrenopeziza brassicae with other plant pathogens. Physiol. Mol. Plant Pathol. 50 : 53-65.
57. Ng P.P., Cole A.L.J., Jameson P.E., Mcwha J.A. 1982. Cytokinin production by ectomycorrhizal fungi. New Phytol. 91 : 57-62.
58. Niehaus E.-M., Münsterkötter M., Proctor R.H., Brown D.W., Sharon A., Idan Y., Tudzynski P. 2016. Comparative "omics" of the Fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol. Evol. 8 : 3574-3599.
59. Özcan B. 2001. GA3, ABA and cytokinin production by Lentinus tigrinus and Laetiporus sulphureus fungi cultured in the medium of olive oil mill waste. Turk. J. Biol. 25 : 453-462.
60. Pils B., Heyl A. 2009. Unraveling the evolution of cytokinin signalling. Plant Physiol. 151 : 782-791.
61. Persson B.C., Esberg B., Ólafsen Ó., Björk G.R. 1994. Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie. 76 : 1152-1160.
62. Pohleven F. 1989. The influence of cytokinin 2iPA on growth, ion transport and membrane fluidity in mycelia of the mycorrhizal fungus Siullus variegates. Agric. Ecos. Environ. 28 : 399-402.
63. Pointing S.B., Hyde K.D. 2001. Bio-Exploitation of Filamentous Fungi. Hong Kong: Fungal Diversity Press. 467 p. doi:
64. Pozo M.J., López-Ráez J.A., Azcón-Aguilar C., García-Garrido J.M. 2015. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol. 205 : 1431-1436.
65. Rabie G.H. 2005. Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza. 15 : 225-230.
66. Reusche M., Klásková J., Thole K., Truskina J., Novák O., Janz D., Strnad M., Spíchal L., Lipka V., Teichmann T. 2013. Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillum longisporum. Mol. Plant-Microbe Interact. 26 (8) : 850-860.
67. Romanov G.A., Lomin S.N., Schmülling T. 2018. Cytokinin signaling from the ER or from the PM? That is the question! New Phytol. 218 : 41-53.
68. Rypacek V., Sladki Z. 1972. The character of endogenous growth regulators in the course of development in the fungus Lentinus tigrinus. Mycopathol. Mycol. Appl. 46 : 65-72.
69. Rypacek V., Sladki Z 1973. Relation between the level of endogenous growth regulators and the differentiation of the fungus Lentinus tigrinus studied in a synthetic medium. Biol. Plant. 15 : 20-26.
70. Schmidt C.S., Mrnka L., Frantik T., Motyka V., Dobrev P. I., Vosátka M. 2017. Combined effects of fungal inoculants and the cytokinin-like growth regulator thidiazuron on growth, phytohormone contents and endophytic root fungi in Miscanthus × giganteus. Plant Physiol. Biochem. 120 : 120-131.
71. Shaul-Keinan O., Gadkar V., Ginzberg I., Grünzweig J., Chet I., Elad Y., Wininger S., Belausov E., Eshed Y., Atzmon N., Ben-Tal Y., Kapulnik Y. 2002. Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol. 154 : 501-507.
72. Shen Q., Liu Y., Naqvi N.I. 2018. Fungal effectors at the crossroads of phytohormone signaling. Curr. Opin. Microbiol. 46 : 1-6.
73. Smith S.E., Read D.J. 2008. Mycorrhizal Symbiosis. Academic Press : London : 800 p.
74. Sørensen J.L., Benfield A.H., Wollenberg R.D., Westphal K., Wimmer R., Nielsen K.F., Nielsen M.R., Carere J., Covarelli L., Beccari G., Powell J., Yamashino T., Kogler H., Sondergaard T.E., Gardiner D.M. 2017. The cereal pathogen Fusarium pseudograminearum produces a new class of active cytokinins during infection. Mol. Plant Pathol. 19 (5) : 1140-1154.
75. Spallek T., Gan P., Kadota Y., Shirasu K. 2018. Same tune, different song - cytokinins as virulence factor in plant-pathogen interaction. Curr. Opin. Plant Biol. 44 : 82-87.
76. Streletskii R.A., Kachalkin A.V.,, Glushakova A.M.,, Yurkov A.M.,, Demin V.V. 2019. Yeasts producing zeatin. Peer J. 7 (2) : e6474.
77. Sun Y.-P., Fries N. 1992. The effect of tree-root exudates on the growth rate of ectomycorrhizal and saprotrophic fungi. Mycorrhiza. 1 : 63-69.
78. Swartzberg D., Kirshner B., Rav-David D., Elad Y., Granot D. 2008. Botrytis cinerea induces senescence and is inhibited by autoregulated expression of the IPT gene. Eur. J. Plant Pathol. 120 : 289-297.
79. Torelli A., Trotta A., Acerbi L., Arcidiacono G., Berta G., Branca C. 2000. IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil. 226 : 29-35.
80. Trdá L., Barešová M., Šašek V., Nováková M., Zahajská L., Dobrev P.I., Motyka V., Burketová L. 2017. Cytokinin metabolism of pathogenic fungus Leptosphaeria maculans involves isopentenyl transferase, adenosine kinase and cytokinin oxidase/dehydrogenase. Front Microbiol. 8 : 1374.
81. Türker M., Demirel K., Uzun Y., Battal P. 2005. Determination of phytohormones level in some dried and fresh macrofungi taxa. Phyton - Annales rei Botanicae. 45 : 145-157.
82. Van Rhijn P., Fang Y., Galili S., Shaul O., Atzmon N., Wininger S., Eshed Y., Lum M., Li Y., To V., Fujishige N., Kapulnik Y., Hirsch A.M. 1997. Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-indused nodules may be conserved. Proc. Natl. Acad. Sci. USA. 94 (10) : 5467-5472.
83. Van Staden J., Nicholson R.I.D. 1989. Cytokinins and mango flower malformation II. The cytokinin complement produced by Fusarium moniliforme and the ability of the fungus to incorporate [8-14C] adenine into cytokinins. Physiol. Mol. Plant Pathol. 35 : 423-431.
84. Vedenicheva N.P., Al-Maali G.A., Bisko N.A., Shcherbatiuk M.M., Lomberg M.M., MytropolskaN.Yu., Mykchaylova O.B., Kosakivs-ka I.V. 2018. Comparative analysis of cytokinins in mycelial biomass of medicinal mushrooms. Int. J. Med. Myshrooms. 20 (9) : 837-847.
85. Vedenicheva N.P., Al-Maali G.A., Mykchaylova O.B., Lomberg M.M., Bisko N.A., Shcherbatiuk M.M., Kosakivska I.V. 2018a. Endogenous cytokinins dynamics in mycelial biomass basidiomycetes at different stages of cultivation. Int. J. Biochem. Physiol. 3 (2) : 000122.
86. Vrabka J., Niehaus E.-M., Münsterkötter M., Proctor R.H., Brown D.W., Novák O., Pěnčik A., Tarkowská D., Hromadová K., Hradilová M., Oklešt'ková J., Oren-Young L., Idan Y., Sharon A., Maymon M., Elazar M., Freeman S., Güldener U., Tudzynski B., Galuszka P., Bergougnoux V. 2019. Production and role of hormones during interaction of Fusarium species with maize (Zea mays L.) seedlings. Front. Plant Sci. 9 : 936.
87. Wang Z.D., Yan N., Wang Z.H., Zhang X.H., Zhang J.Z., Xue H.M., Wang L.X., Zhan Q., Xu Y.P., Guo D.P. 2017. RNA-seq analysis provides insight into reprogramming of culm development in Zizania latifolia induced by Ustilago esculenta. Plant Mol. Biol. 95 : 533-547.
88. Xie Z.P., Müller J., Wiemken A., Broughton W.J., Boller T. 1998. Nod factors and tri-iodobenzoic acid stimulate mycorrhizal colonization and affect carbohydrate partitioning in mycorrhizal roots of Lablab purpureus. New Phytol. 139 : 361-366.
89. Yao Q., Zhu H.H., Chen J.Z. 2005. Growth responses and endogenous IAA and iPAs changes of litchi (Litchi chinensis Sonn.) seedlings induced by arbuscular mycorrhizal fungal inoculation. Sci. Hortic. 105 : 145-151.
90. Zürcher E., Müller B. 2016. Cytokinin synthesis, signaling and function - advances and new insights. Int. Rev. Cell Mol. Biol. 324 : 1-38.