Visn. Hark. nac. agrar. univ., Ser. Biol., 2020, Issue 2 (50), p. 6-34


N.A. Belyavskaya, O. M. Fediuk, E. K. Zolotareva

Kholodny Institute of Botany
of National Academy of Sciences of Ukraine
(Kyiv, Ukraine)


Soluble carbohydrates, being the products of photosynthesis, short-term depot for energy storage, carbon sources and components for the synthesis of oligo- and polysaccharides, take part in key physiological, biochemical and molecular genetic processes that ensure growth, development, reproduction and protection against adverse biotic and abiotic factors, among which cold stress occupies an important place. Although the Earth’s global temperature is gradually rising, frosts and cold weather are becoming more frequent all over the world. The review discusses the effects of cold at all levels of plant organization, as a result of which the functions of soluble carbohydrates as cryoprotectors, osmolytes, antioxidants, and signaling molecules are manifested. The whole complex of network components providing soluble carbohydrates metabolism, including enzymes, transporters, genes, transcription factors, etc., takes part in the cold acclimation of plants. By the methods of genomics and genetic engineering, which allowed the transformation of certain genes to modificate carbohydrate metabolism, carbohydrate transport and/or their signaling, certain successes have been achieved in the field of creating new cold-resistant plant varieties, which can serve as an important prerequisite for increasing the yield of agricultural plants in areas with unstable weather conditions.

Key wordssoluble carbohydrates, plant, cold stress, acclimation



1. Antipina O. V., Astakhova, N. V., Popov, V. N., & Selivanov, A. A. 2015. Change in the ultrastructural organization of chloroplasts of tobacco plants and Arabidopsis in connection with the formation of resistance to hypothermia. In: New and Non-Traditional Plants and Prospects for Their Use : 188-192. (In Russian).
2. Astakhova N.V., Popov V.N., Selivanov A.A., Burakhanova E.A., Alieva G.P., Moshkov I.E. 2014. Reorganization of chloroplast ultrastructure associated with low-temperature hardening of arabidopsis plants. Russ. J. Plant Physiol. 61 (6) : 744-750.
3. Burmistrova N.A., Gomaa A., Raldugina G.N. 2011. Content of soluble sugars and cold tolerance of rapeseed plants with the integrated osmyb4 gene. In: Proc. int. conf. Structural and Functional Deviations from the Normal Growth and Development of Plants under the Influence of Environmental Factors : 54-59. (In Russian).
4. Deryabin A.N., Astakhova N.V., Alieva G.P., Trunova T.I. 2018. Dependence of the cold resistance of potato plants from the characteristics of carbohydrate metabolism. In: Proc. int. conf. Structural and Functional Deviations from the Normal Growth and Development of Plants under the Influence of Environmental Factors : 259-263. (In Russian).
5. Karelina T.V., Novitskaya L.L. 2011. The effect of various concentrations of sucrose and its cleavage products on the morphogenesis of conductive tissues of aspen, alder and birch. In: Proc. int. conf. Structural and Functional Deviations from the Normal Growth and Development of Plants under the Influence of Environmental Factors : 107-112. (In Russian).
6. Karelina T.V., Novitskaya L.L., Galibina N.A. 2011. The effect of exogenous sucrose on the content of mono- and disaccharides in the tissues of the trunk of a birch, alder and aspen in preparation for dormancy. In: Proc. int. conf. Structural and Functional Deviations from the Normal Growth and Development of Plants under the Influence of Environmental Factors : 112-116. (In Russian).
7. Kolupaev Yu.E., Gorelova E.I., Yastreb T.O. 2018. Mechanisms of plant adaptation to hypothermia: the role of the antioxidant system. Visn. Hark. nac. agrar. univ., Ser. Biol. 1 (43) : 6-33. (In Russian).
8. Kondratyeva V.V., Semenova, M.V., Voronkova T.V., Shelepova O.V., Danilina N.N. 2009. Physiological and biochemical changes in the underground shoots of white cinquefoil (Potentilla alba L.) and snow-white snowdrop (Galanthus nivalis L.) during wintering under introduction. Plant Varieties Studying and Protection. 2 (10) : 93-98. (In Russian).
9. Kopylova N.A. 2011. Ultrastructural and biochemical changes in the plant cell under the influence of low temperature stress. Vesci Nat. Acad. Navuk Belarusі. Ser Biyal. Navuk. 2: 106-113. (In Russian).
10. Major P.S., Kozina G.Ya., Slyvka L.V. 2010. The soluble sugar content in the winter wheat plants during the autumn-winter period. Fiziol. biochim. cult. rast. 42 (2) : 174-183. (In Ukrainian).
11. Naraikina N.V., Astakhova N.V., Deryabin A.N., Sinkevich M.S., Trunova T.I. 2018. Adaptive alterations in the ultrastructure of chloroplasts and the contents of pigments and sugars under low temperature hardening of potato plants: role of Δ12 acyl-lipid desaturase. Biol. Bull. Russ. Acad. Sci. 45 : 549-556.
12. Novitskaya L.L., Galibina N.A. 2011. Transport and reserve forms of sugar in birch saggy (Betula pendula roth). In: Proc. int. conf. Structural and Functional Deviations from the Normal Growth and Development of Plants under the Influence of Environmental Factors : 230-236. (In Russian).
13. Plyusnina S.N., Malyshev R.V. 2011. The formation of ice in the needles and buds of Siberian spruce under experimental conditions. In: Biologicheskiy monitoring prirodno-tekhnogennykh sistem (Biological Monitoring of Natural-Technogenic Systems) : 65-67. (In Russian).
14. Tarelkina T.V., Novitskaya L.L., Galibina N.A. 2015. The content of soluble sugars in the tissues of the trunk of a birch, alder and aspen in an experiment with the introduction of exogenous sucrose. Trudy Karel'skogo Nauchnogo Tsentra RAN. 12 : 135-142. (In Russian).
15. Trunova T.I. 2007. Rasteniye i nizkotemperaturnyy stress (Plant and Low Temperature Stress): The 64th Timiryazev memorial lecture. Moscow : 54 p. (In Russian).
16. Fedyuk O.M., Bilyavska N.O. 2015. Ultrastructural serpentine leaflet Galanthus nivalis L. during vegetation for the mind of hypothermia. Visn. Hark. nac. agrar. univ., Ser. Biology. 2 (35) : 58-63. (In Ukrainian).
17. Fediuk O.M., Bilyavska N.O., Zolotareva O.K. Ultrastructural peculiarities and state of the photosynthetic apparatus in leaves of Galanthus nivalis (Amaryllidaceae) in its spring stage of ontogenesis. Ukr. Bot. J. 2017. 74 (5) : 475-487. (In Ukrainian).
18. Abelenda J.A., Bergonzi S., Oortwijn M., Sonnewald S., Du M., Visser R.G.F., Sonnewald U. 2019. Source-sink regulation is mediated by interaction of an ft homolog with a sweet protein in potato. Curr. Biol. 29 : 1178-1186.
19. Achard P., Gong F., Cheminant S., Alioua M., Hedden P., Genschik P. 2008. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell. 20 : 2117-2129.
20. Ajito S., Iwase, H., Takata, S. I., Hirai, M. 2018. Sugar-mediated stabilization of protein against chemical or thermal denaturation. J. Phys. Chem. B. 122 (37) : 8685-8697.
21. Antunes W.C., de Menezes Daloso D., Pinheiro D.P., Williams T.C.R., Loureiro M.E. 2017. Guard cell-specific down-regulation of the sucrose transporter SUT1 leads to improved water use efficiency and reveals the interplay between carbohydrate metabolism and K+ accumulation in the regulation of stomatal opening. Environ. Exp. Bot. 135 : 73-85.
22. Barrero-Gil J., Salinas J. 2018. Gene regulatory networks mediating cold acclimation: The CBF pathway. In: Survival Strategies in Extreme Cold and Desiccation : 3-22.
23. Barton, K. A., Wozny, M. R., Mathur, N., Jaipargas, E. A., Mathur, J. 2018. Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells. J. Cell Sci. 131 : jcs202275.
24. Bello B., Zhang X., Liu C., Yang Z., Yang Z., Wang Q., Li F. 2014. Cloning of Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 gene (GhSnRK2) and its overexpression in transgenic Arabidopsis escalates drought and low temperature tolerance. PLoS One. 9 : 11.
25. Benina M., Obata T., Mehterov N., Ivanov I., Petrov V., Toneva V., Gechev. 2013. Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla and Arabidopsis thaliana exposed to low temperature. Front. Plant Sci. 4 : 499.
26. Bhandari K. 2018. Chilling stress: how it affects the plants and its alleviation strategies. Int. J. Pharm. Sci. Res. 9 (6) : 2197-2200.
27. Bilyavska N.O., Fediuk O.M., Zolotareva E.K. 2019. Chloroplasts of cold-tolerant plants. Plant Science Today. 6 (4) : 407-411.
28. Borovik O.A., Pomortsev A.V., Korsukova A.V., Polyakova E.A., Fomina E. A., Zabanova N.S., Grabelnych O.I. 2019. Effect of cold acclimation and deacclimation on the content of soluble carbohydrates and dehydrins in the leaves of winter wheat. J. Stress Physiol. Biochem. 15 (2) : 62-67.
29. Bouchnak I., Brugière S., Moye L., Le Gall S., Salvi D., Kuntz M., Rolland N. 2019. Unraveling hidden components of the chloroplast envelope proteome: opportunities and limits of better MS sensitivity. Mol. Cell. Proteomics. 18 (7) : 1285-1306.
30. Bredow M., Walker V. K. 2017. Ice-binding proteins in plants Front. Plant Sci. 8 : 2153.
31. Buy D.D., Demkovych A.E., Pirko Y.V., Blume Y.B. 2019. Analysis of α-Tubulin Gene Expression During Cold Acclimation of Winter and Spring Soft Wheat. Cytol. Genet. 53 (1), 23-33.
32. Byun M.Y., Cui L.H., Lee A., Kim W.T., Lee H. 2018. Identification of rice genes associated with enhanced cold tolerance by comparative transcriptome analysis with two transgenic rice plants overexpressing DaCBF4 or DaCBF7, isolated from antarctic flowering plant Deschampsia antarctica. Front. Plant Sci. 3 : 9.
33. Chen C., Yuan Y., Zhang C., Li H., Ma F., Li M. 2017. Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit. Plant Sci. 255 : 40-50.
34. Chen L.J., Xiang H.Z., Miao Y., Zhang L., Guo Z.F., Zhao X.H., Lin J.W., Li T.L. 2014. An overview of cold resistance in plants. J. Agron. Crop Sci. 200 : 237-245.
35. Chen, Q., Yang, G. 2020. Signal Function Studies of ROS, Especially RBOH-dependent ROS, in plant growth, development and environmental stress. J. Plant Growth Regul. 39 : 157-171.
36. Chinnusamy V., Zhu J., Zhu J. K. 2007. Cold stress regulation of gene expression in plants. Trends Plant Sci. 12 : 444-451.
37. Cho L. H., Pasriga R., Yoon J., Jeon J.S., An G. 2018. Roles of sugars in controlling flowering time. J. Plant Biol. 61 (3) : 121-130.
38. Comtet J., Turgeon R., Stroock A.D. 2017. Phloem loading through plasmodesmata: a biophysical analysis. Plant Physiol. 175 : 904-915.
39. Crepin N., Rolland F. 2019. SnRK1 activation, signaling, and networking for energy homeostasis. Curr. Opin. Plant Biol. 51 : 29-36.
40. Delfosse K., Wozny M.R., Barton K.A., Mathur N., Griffiths N., Mathur J. 2018. Plastid envelope-localized proteins exhibit a stochastic spatiotemporal relationship to stromules. Front Plant Sci., 9 : 754.
41. Deryabin A., Berdichevets I., Trunova T. 2018. Constitutively expressing of the suc2 gene of Saccharomyces cerevisiae encoding of invertase apoplastic localization in potato plants results in multiple physiological and biochemical changes associated with low temperature resistance. J. Plant Chem. Ecophysiol. 3 (1) : 1-6.
42. Deryabin A.N., Trunova T.I. 2016. The physiological and biochemical mechanisms providing the increased constitutive cold resistance in the potato plants, expressing the yeast SUC2 gene encoding apoplastic invertase. J. Stress Physiol. Biochem. 12 (2) : 39-52.
43. Ding Y., Shi Y., Yang S. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 222 (4) : 1690-1704.
44. Doidy J., Vidal U., Lemoine R. 2019. Sugar transporters in Fabaceae, featuring SUT MST and SWEET families of the model plant Medicago truncatula and the agricultural crop Pisum sativum. PloS one. 14 (9) : e0223173.
45. Dong S., Beckles D.M. 2019. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. J. Plant Physiol. 234: 80-93.
46. ElSayed A.I., Rafudeen M.S., Golldack D. 2014. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol. 16 : 1-8.
47. Fediuk O.M., Bilyavska N.O., Zolotareva E. K. 2018. Effects of soil early-spring temperature on the morphometric parameters of mitochondria in Galanthus nivalis L. Plant Science Today. 5 (4) : 149-154.
48. Fediuk O.M., Bilyavska N.O., Zolotareva O.K. 2017. Effects of sucrose on structure and functioning of photosynthetic apparatus of Galanthus nivalis L. leaves exposed to chilling stress. Ann. Romanian Soc. Cell Biol. 21 : 43-51.
49. Fernández-Marín B., Gulías J., Figuero C. M., Iñiguez C., Clemente-Moreno M. J., Nunes-Nesi A., Gago J. 2020. How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. Plant J. 101 (4) : 979-1000.
50. Figueroa C.M., Lunn J.E. 2016. A tale of two sugars: Trehalose 6-phosphate and sucrose. Plant Physiol. 172 : 7-27.
51. Fki L., Bouaziz N., Chkir O., Benjemaa-Masmoudi R., Rival A., Swennen R., Panis B. 2013. Cold hardening and sucrose treatment improve cryopreservation of date palm meristems. Biol. Plant. 57 (2) : 375-379.
52. Foyer C.H., Shigeoka S. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 155 : 93-100.
53. Fu J., Miao Y., Shao L., Hu T., Yang P. 2016. De novo transcriptome sequencing and gene expression profiling of Elymus nutans under cold stress. BMC Genomics. 17 (1) : 870.
54. Fürtauer L., Weiszmann J., Weckwerth W., Nägele T. 2019. Dynamics of Plant Metabolism during Cold Acclimation. Int. J. Mol. Sci.. 20 (21) : 5411.
55. Gangl R., Tenhaken R. 2016. Raffinose family oligosaccharides act as galactose stores in seeds and are required for rapid germination of Arabidopsis in the dark. Front. Plant Sci. 7 : 1115.
56. Gangola M.P., Ramadoss B.R. 2018. Sugars Play a Critical Role in Abiotic Stress Tolerance in Plants. In: Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants. Academic Press : 17-38.
57. Giełwanowska I., Pastorczyk M., Kellmann-Sopyła W., Gorniak D., Gorecki R. 2015. Morphological and ultrastructural changes of organelles in leaf mesophyll cells of the arctic and antarctic plants of poaceae family under cold influence. Arctic Antarct Alp Res. 47 (1) : 17-25.
58. Giełwanowska I., Pastorczyk M., Lisowska M., Węgrzyn M., Górecki R. 2014. Cold stress effects on organelle ultrastructure in polar Caryophyllaceae species. Polish Polar Research. 35 (4) : 627-46.
59. Guo X.Y., Liu D.F., Chong K. 2018. Cold signaling in plants: Insights into mechanisms and regulation. J. Integr. Plant Biol. 60 : 745-756.
60. Guo X., Zhang L., Dong G., Xu Z., Li G., Liu N., Zhu J. 2019. A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco (Nicotiana tabacum). Plant Sci. 289 : 110246.
61. Han, Q., Qi, J., Hao, G., Zhang, C., Wang, C., Dirk, L. M., Zhao, T. 2020. ZmDREB1A regulates RAFFINOSE SYNTHASE controlling raffinose accumulation and plant chilling stress tolerance in maize. Plant Cell Physiol. 61 (2) : 331-341.
62. Hanson M.R., Hines K.M. 2018. Stromules: Probing formation and function. Plant Physiol. 176 : 128-137.
63. Hayashi K., Matsunaga S. 2019. Heat and chilling stress induce nucleolus morphological changes. J. Plant Res. 132 (3) : 395-403.
64. Hei S., Liu Z., Huang A., She X. 2018. The regulator of G-protein signalling protein mediates D-glucose-induced stomatal closure via triggering hydrogen peroxide and nitric oxide production in Arabidopsis. Funct. Plant Biol. 45 (5) : 509-518.
65. Hellmann H. A., Smeekens S. 2014. Sugar sensing and signaling in plants. Front. Plant Sci. 5 : 113.
66. Hellmers H., Warrington I. 2018. Temperature and plant productivity. In: Handbook of Agricultural Productivity. CRC Press : 11-22.
67. Herath V. 2018. Transcription factors based genetic engineering for abiotic tolerance in crops. In: Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants. Academic Press : 1-15.
68. Hoermiller I. I., Naegele T., Augusti H., Stut S., Weckwerth W., Heyer A.G. 2017. Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana. Plant Cell Environ. 40 (5) : 602-610.
69. Huh Y.S., Lee J.K., Nam S.Y., Hong E.Y., Paek K.Y., Son S.W. 2016. Effects of altering medium strength and sucrose concentration on in vitro germination and seedling growth of Cypripedium macranthos Sw. J. Plant Biotechnol. 43 (1) : 132-137.
70. Hurry V. 2017. Metabolic reprogramming in response to cold stress is like real estate, it's all about location. Plant Cell Environ. 40 : 599-601.
71. Ishikawa M., Yamazaki H., Kishimoto T., Murakawa H., Stait-Gardner T., Kuchitsu K., Price W.S. 2018. Ice nucleation activity in plants: the distribution, characterization, and their roles in cold hardiness mechanisms. In: Survival Strategies in Extreme Cold and Desiccation. : 99-115.
72. Ivamoto S.T., Reis O Júnior., Domingues D.S., dos Santos T.B., de Oliveira F.F., Pot D. 2017. Transcriptome analysis of leaves, flowers and fruits perisperm of Coffea arabica L. reveals the differential expression of genes involved in raffinose biosynthesis. PLoS ONE. 12 : e0169595.
73. Jewell M.C., Campbell B.C., Godwin I.D. 2010. Transgenic plants for abiotic stress resistance. In: Transgenic Crop Plants. Springer-Verlag : 67-132.
74. Jia W., Zhang L., Wu D., Liu S., Gong X., Cui Z., Cui N., Cao H., Rao L., Wang C. 2015. Sucrose transporter AtSUC9 mediated by a low sucrose level is involved in Arabidopsis abiotic stress resistance by regulating sucrose distribution and ABA accumulation. Plant Cell Physiol. 56: 1574-1587.
75. John R., Anjum N.A., Sopory S.K., Akram N.A., Ashraf M. 2016. Some key physiological and molecular processes of cold acclimation. Biol. Plant. 60 (4) : 603-618.
76. Kakumanu A., Ambavaram M.M.R., Klumas C., Krishnan A., Batlang U. 2012. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol. 160 : 846-867.
77. Keunen E.L.S., Peshev D., Vangronsveld J., Van Den Ende W.I.M., Cuypers A.N.N. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 36 (7) : 1242-1255.
78. Kimura S., Hunter K., Vaahtera L., Tra H. C., Citteri¬co M., Vaattovaara A., Wilkens M.M.T. 2020. CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in Arabidopsis. Plant Cell. 32 (4) : 1063-1080.
79. Koleva D., Stefanova M., Dragolova D., Kapchina-Toteva V., Chaneva G. 2015. Structural and functional markers for stress response in three Hypericum species after cryopreservation. Oxidation Communications. 38 (4A) : 2045-2057.
80. Koleva, D., Ganeva, T., Stefanova M. 2012. Effect of cryoprotectants sucrose and ABA on chloroplasts structure in regenerated after cryopreservation Orthosiphon stamineus Benth. plants. J. Pharm. Res. 5 (8) : 4172-4174.
81. Krasavina M.S., Burmistrova N.A., Raldugina, G.N. 2014. The role of carbohydrates in plant resistance to abiotic stresses. In: Emerging Technologies and Management of Crop Stress Tolerance. Academic Press : 229-270.
82. Krasensky J., Jonak C. 2012. Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63 : 1593-1608.
83. Kratsch H.A., Wise R.R. 2000. The ultrastructure of chilling stress. Plant Cell Environ. 23 (4) : 337-350.
84. Kumar R., Bishop E., Bridges WC., Tharayil N., Sekhon R.S. 2019. Sugar partitioning and source-sink interaction are key determinants of leaf senescence in maize. Plant Cell Environ. 42 (9) : 2597-2611.
85. Lara-Núñez A., García-Ayala B.B., Garza-Aguilar S.M., Flores-Sánchez J., Sánchez-CamargoV.A., Bravo-Alberto C.E., Vázquez-Ramos J.M. 2017. Glucose and sucrose differentially modify cell proliferation in maize during germination. Plant Physiol. Biochem. 113 : 20-31.
86. Lasseur B., Lothier J., Wiemken A., Van Laer, A., Morvan-Bertrand A., Van den Ende W. 2011. Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose: fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne). J. Exp. Bot. 62 : 1871-1885.
87. Lastdrager J., Hanson J., Smeeken S. 2014. Sugar signals and the control of plant growth and development. J. Exp. Bot. 65 : 799-807.
88. Leuendorf J.E., Fran M., Schmülling T.A. 2020. Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci Rep. 10 : 689.
89. Li J., Qin M., Qiao X., Cheng Y., Li X., Zhang H., Wu J. 2017. A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear (Pyrus bretschneideri). Plant Cell Physiol. 58 : 839-850.
90. Li S.L., Li Z.G., Yang L.T., Li Y.R., He Z.L. 2018. Differential effects of cold stress on chloroplasts structures and photosynthetic characteristics in cold-sensitive and cold-tolerant cultivars of sugarcane. Sugar Tech. 20 (1) : 11-20.
91. Li W., Liu Y., Liu M., Zheng Q., Li B., Li Z., Li H. 2019. Sugar accumulation is associated with leaf senescence induced by long-term high light in wheat. Plant Sci. 287 : 110169.
92. Li W., Ren Z., Wang Z., Sun K., Pei X., Liu Y., Zhang W. 2018. Evolution and stress responses of Gossypium hirsutum SWEET genes. Int. J. Mol. Sci. 19 (3) : 769.
93. Li Y., Wang X., Ban Q., Zhu X., Jiang C., Wei C., Bennetzen J.L. 2019. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genomics. 20 (1) : 624.
94. Li S.L., Li Z.G., Yang L.T., Li Y.R., He Z.L. 2018. Differential effects of cold stress on chloroplasts structures and photosynthetic characteristics in cold-sensitive and cold-tolerant cultivars of sugarcane. Sugar Tech. 20 (1) : 11-20.
95. Lianopoulou V., Bosabalidis A.M., Patakas A., Lazari D., Panteris E. 2014. Effects of chilling stress on leaf morphology, anatomy, ultrastructure, gas exchange, and essential oils in the seasonally dimorphic plant Teucrium polium (Lamiaceae). Acta Physiol. Plant. 36 (8) : 2271-2281.
96. Liu J., Shi Y., Yang S. 2018. Insights into the regulation of CBF cold signaling in plants. J. Integr. Plant Biol. 9 : 780-795.
97. Liu X., Fu L., Qin P., Sun Y., Liu J., Wang X. 2019. Overexpression of the wheat trehalose 6-phosphate synthase 11 gene enhances cold tolerance in Arabidopsis thaliana. Gene. 710 : 210-217.
98. Liu Y.H., Offler C.E., Ruan Y.L. 2016. Cell wall invertase promotes fruit set under heat stress by suppressing ROS-independent cell death. Plant Physiol. 172 : 163-180.
99. Lü J., Sui X., Ma S., Li X., Liu H., Zhang Z. 2017. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance. Plant Mol. Biol. 95 (1-2) : 1-15.
100. Lu J.G., Sui X.L., Ma S., Li X., Liu H., Zhang Z.X. 2017. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance. Plant Mol. Biol. 95 : 1-15.
101. Lunn J.E. 2016. Sucrose Metabolism. eLS. John Wiley & Sons, Ltd: Chichester.
102. Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M 2014. Trehalose metabolism in plants. Plant J. 79 (4) : 544-567.
103. Lütz C. 2010. Cell physiology of plants growing in cold environments. Protoplasma. 244 (1-4) : 53-73.
104. Lütz C., Bergweiler P., Di Piazza L., Holzinger A. 2012. Cell organelle structure and function in Alpine and Polar plants are influenced by growth conditions and climate. In: Plants in Alpine Regions: Cell Physiology of Adaption and Survival Strategies : 43-60.
105. Maleki M., Ghorbanpour M. 2018. Cold tolerance in plants: molecular machinery deciphered. In: Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants. Academic Press : 57-71.
106. Markovskaya, E. F., Shibaeva, T. G. 2017. Low temperature sensors in plants: Hypotheses and assumptions. Biol. Bull. 44 (2) : 150-158.
107. Martin M.V., Fiol D.F., Sundaresan V., Zabaleta E.J., Pagnussata D.C. 2013. Oiwa, a female gametophytic mutant impaired in a mitochondrial manganese-superoxide dismutase, reveals crucial roles for reactive oxygen species during embryo sac development and fertilization in Arabidopsis. Plant Cell. 25 : 1573-1591.
108. Mathew L., McLachlan A., Jibran R., Burritt D.J., Pathirana R. 2018. Cold, antioxidant and osmotic pre-treatments maintain the structural integrity of meristematic cells and improve plant regeneration in cryopreserved kiwifruit shoot tips. Protoplasma. 255 (4) : 1065-1077.
109. McQuigg J.D. 2018. Climatic variability and plant productivity. In: Handbook of Agricultural Productivity. CRC Press : 3-10.
110. Mollo L., Martins M.C.M., Oliveira V.F., Nievola C.C., Cassi R., Figueiredo-Ribeiro L. 2011. Effects of low temperature on growth and non-structural carbohydrates of the imperial bromeliad Alcantarea imperialis cultured in vitro. Plant Cell Tissue Organ Cult. 107 : 141-149.
111. Nafees M., Fahad S., Sha, A.N., Bukhar M. A., Ahmed I., Ahmad S., Hussain S. 2019. Reactive oxygen species signaling. In: Plants. Plant Abiotic Stress Tolerance. Springer, Cham : 259-272.
112. Nägele T., Kandel B.A., Frana S., Meißner M., Heyer A.G. 2011. A systems biology approach for the analysis of carbohydrate dynamics during acclimation to low temperature in Arabidopsis thaliana. FEBS J. 278 (3) : 506-518.
113. Nagler M., Nukarinen E., Weckwerth W., Nägele T. 2015. Integrative molecular profiling indicates a central role of transitory starch breakdown in establishing a stable C/N homeostasis during cold acclimation in two natural accessions of Arabidopsis thaliana. BMC Plant Biol. 15 : 284.
114. Newell C.A., Natesan S.K., Sullivan J.A., Jouhet J., Kavanagh T.A., Gray J.C. 2012. Exclusion of plastid nucleoids and ribosomes from stromules in tobacco and Arabidopsis. Plant J. 69 : 399-410.
115. Novitskaya L.L., Tarelkina T.V., Galibina N.A., Moshchenskaya Yu.L., Nikolaeva N.N., Nikerov K.M. Podgornaya M.N., Sofronova I.N., Semenova L.I. 2020. The formation of structural abnormalities in Karelian birch wood is associated with auxin inactivation and disrupted basipetal auxin transport. J. Plant Growth Regul. 39 : 378-394.
116. O'Hara LE, Paul MJ, Wingler A. 2013. How do sugars regulate plant growth insight into the role of trehalose-6-phosphate. and development? New Mol. Plant 6 : 261-274.
117. Palta J. P., Weiss L. S. 2018. Ice formation and freezing injury: an overview on the survival mechanisms and molecular aspects of injury and cold acclimation in herbaceous plants. In: Advances in Plant Cold Hardiness. CRC Press : 143-176.
118. Park S., Gilmour S.J., Grumet R., Thomashow M.F. 2018. CBF-dependent and CBF independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy. PLoS ONE. 13 (12) : e0207723.
119. Pastorczyk, M., Giełwanowska, I., Lahuta, L. B. 2014. Changes in soluble carbohydrates in polar Caryophyllaceae and Poaceae plants in response to chilling. Acta Physiol. Plant. 36 (7) : 1771-1780.
120. Patzke K., Prananingrum P., Klemens P. A., Trentmann O., Rodrigues C. M., Keller I., Schmitz-Esse S. 2019. The plastidic sugar transporter pSuT influences flowering and affects cold responses. Plant Physiol. 179 : 569-587.
121. Peng T., Zhu X., Duan N., Liu J. H. 2014. PtrBAM 1, a β-amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant Cell Environ. 37 (12) : 2754-2767.
122. Plohovska S.G., Yemets A.I., Blume Y.B. 2016. Influence of cold on organization of actin filaments of different types of root cells in Arabidopsis thaliana. Cytol. Genet. 50 (5) : 318-323.
123. Pollock C.J., Cairns A.J., Sims I.M., Housley T.L. 2017. Fructans as reserve carbohydrates in crop plants. In: Photoassimilate Distribution Plants and Crops Source-Sink Relationships. Routledge : 97-114.
124. Pommerrenig B., Ludewig F., Cvetkovic J., Trent¬mann O., Klemens P.A., Neuhaus H.E. 2018. In concert: orchestrated changes in carbohydrate homeostasis are critical for plant abiotic stress tolerance. Plant Cell Physiol. 59 (7) : 1290-1299.
125. Pu Y., Liu L., Wu J., Zhao Y., Bai J., M, L., Sun W. 2019. Transcriptome profile analysis of winter rapeseed (Brassica napus L.) in response to freezing stress, reveal potentially connected events to freezing stress. Int. J. Mol. 20 (11) : 2771.
126. Raju S.K.K., Barnes A.C., Schnable J.C., Roston R.L. 2018. Low-temperature tolerance in land plants: Are transcript and membrane responses conserved?. Plant Sci. 276 : 73-86.
127. Rodriguez M., Parola R., Andreola S., Pereyra C., Martínez-Noël G. 2019. TOR and SnRK1 signaling pathways in plant response to abiotic stresses: do they always act according to the "yin-yang" model? Plant Sci. 288 : 110220.
128. Ruan Y. L. 2012. Signaling role of sucrose metabolism in development. Molecular Plant. 5 (4) : 763-765.
129. Ruan Y. L. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 65 : 33-67.
130. Saeiahagh H., Mousavi M., Wiedow C., Bassett H.B., Pathirana R. 2019. Effect of cytokinins and sucrose concentration on the efficiency of micropropagation of 'Zes006' Actinidia chinensis var. chinensis, a red-fleshed kiwifruit cultivar. Plant Cell Tissue Organ Cult. 138 (1) : 1-10.
131. Saito M., Yoshida M. 2011. Expression analysis of the gene family associated with raffinose accumulation in rice seedlings under cold stress. J. Plant Physiol. 168 : 2268-2271.
132. Sakr S., Wang M., Dédaldéchamp F., Perez-Garcia M.D., Ogé L., Hamama L., Atanassova R. 2018. The sugar-signaling hub: Overview of regulators and interaction with the hormonal and metabolic network. Int. J. Mol. Sci. 19 (9) : 2506.
133. Sami F., Yusuf M., Faizan M., Faraz A., Hayat S. 2016. Role of sugars under abiotic stress. Plant Physiol. Biochem. 109 : 54-61.
134. Sarabia L.D., Hill C.B., Boughton B.A., Roessner U. 2018. Advances of metabolite profiling of plants in challenging environments. Annu. Plant Rev. online : 1-45.
135. Schattat M., Griffiths S., Mathur N., Barton K., Wozny M., Dunn N. 2012a. Differential coloring reveals that plastids do not form networks for exchanging macromolecules. Plant Cell. 24 : 1465-1477.
136. Schattat M., Klösgen R.B., Mathur J. 2012b. New insights on stromules: stroma filled tubules extended by independent plastids. Plant Signal. 7 : 1132-7.
137. Schattat M.H., Barton K.A., Mathur J. 2015. The myth of interconnected plastids and related phenomena. Protoplasma. 252 (1) : 359-371.
138. Sengupta S., Mukherjee S., Basak P., Majumder A.L. 2015. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front. Plant Sci. 6 : 656.
139. Shimosaka E., Ozawa K. 2015. Overexpression of cold-inducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice. Breeding Sci. 65 (5) : 363-371.
140. Silva F.G D., Canguss L. M.B., Paula S.L.A.D., Melo G.A., Silva E. A. 2013. Seasonal changes in fructan accumulation in the underground organs of Gomphrena marginata Seub.(Amaranthaceae) under rock-field conditions. Theor. Exp. Plant Phys. 25 (1) : 46-55.
141. Slewinski T.L. 2011. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. Mol. Plant. 4 : 641-662.
142. Sun S., Fang J., Lin M., Qi X., Chen J., Wang R., Muhammad A. 2020. Freezing Tolerance and Expression of β-amylase Gene in Two Actinidia arguta Cultivars with Seasonal Changes. Plants. 9 (4) : 515.
143. Tarkowski Ł.P., Van den Ende W. 2015. Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Front. Plant Sci. 6 : 203.
144. Tisarum R., Theerawitaya C., Samphumphuang T., Singh H. P., Chaum S. 2020. Foliar application of glycinebetaine regulates soluble sugars and modulates physiological adaptations in sweet potato (Ipomoea batatas) under water deficit. Protoplasma. 257 : 197-211.
145. Trentmann O., Mühlhaus T., Zimmer D., Sommer F.K., Schroda M., Haferkamp I., Neuhaus H.E. 2020. Identification of chloroplast envelope proteins with critical importance for cold acclimation. Plant Physiol. 182 (3) : 1239-1255.
146. Udomdee W., Wen, P. J., Lee C.Y., Chin S.W., Chen F.C. 2014. Effect of sucrose concentration and seed maturity on in vitro germination of Dendrobium nobile hybrids. Plant Growth Regul. 72 (3) : 249-255.
147. Van den Ende W. 2013. Multifunctional fructans and raffinose family oligosaccharides. Front. Plant Sci. 4 : 247.
148. Van den Ende W., El-Esawe S. K. 2014. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses? Environ. Exp. Bot. 108 : 4-13.
149. Van Dingenen, J., Vermeersch, M., De Milde, L., Hulsmans, S., De Winne, N., Van Leene, J., Inzé, D. 2019. The role of HEXOKINASE1 in Arabidopsis leaf growth. Plant Mol. Biol. 99 (1-2) : 79-93.
150. Wan H., Wu L., Yang Y., Zhou G., Ruan Y. L. 2018. Evolution of sucrose metabolism: the dichotomy of invertases and beyond. Trends Plant Sci. 23 (2) : 163-177.
151. Wang L. H., Li G. L., Wei S., Li L.J., Zuo S. Y., Liu X., Li J. 2019. Effects of exogenous glucose and sucrose on photosynthesis in triticale seedlings under salt stress. Photosynthetica. 57 (1) : 286-294.
152. Wang L., Yao L., Hao X., Li N., Qian W., Yue C., Wang X. 2018. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Mol Biol. 96 : 577-592.
153. Wang H., Xin H., Guo J., Gao Y., Liu C., Dai D., Tang L. 2019. Genome-wide screening of hexokinase gene family and functional elucidation of HXK2 response to cold stress in Jatropha curcas. Mol. Boil. Rep. 46 (2) : 1649-1660.
154. Weiszmann J., Fürtauer L., Weckwerth W., Nägele T. 2018. Vacuolar sucrose cleavage prevents limitation of cytosolic carbohydrate metabolism and stabilizes photosynthesis under abiotic stress. FEBS J. 285 (21) : 4082-4098.
155. World agricultural production 2018. United States Department of Agriculture, Foreign Agricultural Service, Circular Series: December
156. Wurzinger B., Nukarinen E., Nägele T., Weckwerth W., Teige M. 2018. The SnRK1 kinase as central mediator of energy signaling between different organelles. Plant Physiol. 176 (2) : 1085-1094.
157. Xalxo R., Yadu B., Chandra J., Chandrakar V., Keshavkant S. 2020. Alteration in Carbohydrate Metabolism Modulates Thermotolerance of Plant under Heat Stress. Heat Stress Tolerance in Plants. In: Physiological, Molecular and Genetic Perspectives : 77-115.
158. Xiong, Y., Sheen, J. 2015. Novel links in the plant TOR kinase signaling network. Curr. Opin. Plant Biol. 28 : 83-91.
159. Yang G., Xu H., Zou Q., Zhang J., Jiang S., Fang H., Chen X. 2020. The vacuolar membrane sucrose transporter MdSWEET16 plays essential roles in the cold tolerance of apple. Plant Cell Tiss Organ Cult. 140 : 129-142.
160. Yue C., Cao H., Wang L. 2015. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Mol. Biol. 88 : 591-608.
161. Zhang J., Gu H, Dai H., Zhang Z., Miao M. 2020. Alternative polyadenylation of the stacyose synthase gene mediates source-sink regulation in cucumber, J. Plant Physiol. 245 : 153111.
162. Zhang J., Wu Z., Hu F., Liu L., Huang X., Zhao J., Wang H. 2018. Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes. Hort. Res. 5. (1) : 1-13.
163. Zhang Z-G., Lv G-d., Li B., Wang J-J., Zhao Y., Kong F-M. 2017. Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L.). PLoS ONE. 12 (3) : e0174425.
164. Zhao L., Yang T., Xing C., Dong H., Qi K., Gao J., Huang X. 2019. The β-amylase PbrBAM3 from pear (Pyrus betulaefolia) regulates soluble sugar accumulation and ROS homeostasis in response to cold stress. Plant Sci. 287 : 110184.
165. Zhao Y., Zhou M., Xu K., Li J., Li S., Zhang S., Yang X. 2019. Integrated transcriptomics and metabolomics analyses provide insights into cold stress response in wheat. Crop J. 7 (6) : 857-866.
166. Zúñiga-Feest A., Bascuñán-Godoy L., Reyes-Diaz M. 2009. Is survival after ice encasement related with sugar distribution in organs of the Antarctic plants Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae)? Polar Biol. 32 : 583-591.
167. Żur I., Gołębiowska G., Dubas E., Golemiec E., Matušíková I., Libantová J., Moravčíková J. 2013. β-1, 3-glucanase and chitinase activities in winter triticales during cold hardening and subsequent infection by Microdochium nivale. Biologia. 68 (2) : 241-248.