Visn. Hark. nac. agrar. univ., Ser. Biol., 2020, Issue 1 (49), p. 62-71


https://doi.org/10.35550/vbio2020.01.062




DYNAMICS AND DISTRIBUTION OF ABSISIC AND INDOL-3-ACETIC ACIDS IN Triticum aestivum ORGANS AFTER SHORT-TERM HYPERTHERMIA AND DURING RESTORATION


І. V. Kosakivska, L. V. Voytenko, M. M. Shcherbatiuk, V. A. Vasjuk

Kholodny Institute of Botany
of National Academy of Sciences of Ukraine
(Kyiv, Ukraine)
Email:
irynakosakivska@gmail.com


We analyzed the dynamics and distribution of endogenous abscisic (ABA) and indol-3-acetic (IAA) acids in shoots and roots of 14-day-old plants of winter wheat Triticum aestivum L. cv. Podolyanka after short-term hyperthermia (+40°C, 2 h) and the 21-day-old ones during restoration. It was shown that on the early stages of ontogenesis, ABA prevailed in the shoots and IAA in the roots of plants. The accumulation of ABA was more active. The amount of ABA in the shoots of 21-day-old plants increased by 71.4% compared to 14-day-old plants, and by 19.9% in the roots. The accumulation of IAA was less intense. Level of this hormone in the shoots increased by 20.2%, and in the roots – by 1.9%. After heat stress, the ABA content in the shoots and roots of the studied plants increased by 1.3 times and amounted to 39.5 and 19.0 ng/g of fresh weight, respectively. At the same time, the level of IAA in the roots decreased 2.1 times, and in the shoots – 1.7 times and amounted to 51.7 and 44.4 ng/g of fresh weight, respectively. During the recovery period on the 21st day, a further accumulation of ABA was recorded. Thus, the hormone content in the shoots increased by 1.5 times, while in the roots – by 1.9 times and exceeded that of the control plants. An increase in the content of IAA during the recovery period was observed mainly in the shoots (by 80.4%), however, the indices of the studied plants were inferior to the control. In general, the character of accumulation and distribution of ABA and IAA after short-term hyperthermia in wheat plants was different: the amount of ABA increased, while IAA decreased. The interaction of ABA and IAA during hyperthermia and after restoration is discussed.


Key words: Triticum aestivum, abscisic acid, indol-3-acetic acid, hyperthermia, restoration

 


REFERENCES


1. Voytenko L.V., Kosakivska I.V. 2016. Polyfunctional phytohormone abscisic acid. Visn. Hark. nac. agrar. univ., Ser. Biol. 1 (37) : 27-41.
 
2. Kosakivska I.V. 2007. Ecological direction in plant physiology: achievements and prospects. Fisiol. Biochem. Cult. Rast. 39 (4) : 279-290.
 
3. Kosakisvska I.V., Babenko L.M., Vasyuk V.A., Voytenko L.V. 2017. Hyperthermia and ground drought effects on growth, content of photosynthetic pigments and epidermis microstructure in leaf of Triticum spelta L. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (42): 81-91. 
https://doi.org/10.35550/vbio2017.03.081
 
4. Kosakivska I.V., Vasyuk V.A., Voytenko L.V. 2018. Drought stress effects on growth characteristics of two relative weats Triticum aestivum L. and Triticum spelta L. Fisiol. rast. genet. 50 (3): 241-252. 
https://doi.org/10.15407/frg2018.03.241
 
5. Kosakivska I.V., Voytenko L.V., Vasyuk V.A., Vedenichova N.P., Babenko L.M., Shcherbatyuk M.M. 2019а. Phytohormonal regulation of seed germination. Fisiol. rast. genet. 51(3) : 187-206.
https://doi.org/10.15407/frg2019.03.187
 
6. Kosakivska I.V., Vasyuk V.A., Voytenko L.V. 2019б. Effects of exogenous abscisic acid on seed germination and morphological characteristics of two related wheats Triticum aestivum L. and Triticum spelta L. Fisiol. rast. genet. 51 (1) : 55-66. 
https://doi.org/10.15407/frg2019.03.187
 
7. Kosakivska I.V., Vasyuk V.A., Voytenko L.V. 2019в. Effect of exogenous abscisic acid on morphological characteristics of winter wheat and spelt under hyperthermia. Fisiol. rast. genet. 51 (4) : 324-337.
https://doi.org/10.15407/frg2019.04.324
 
8. Asseng S., Ewert F., Martre P., Rötter R.P., Lobell D.B., Cammarano D., Kimball B.A., Ottman M.J., Wall G.W., White J.W., Reynolds M.P. 2015. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 5 : 143-147.
https://doi.org/10.1038/nclimate2470
 
9. Cossani C.M., Reynolds M.P. 2012. Physiological traits for improving heat tolerance in wheat. Plant Physiol. 160 : 1710-1718.
https://doi.org/10.1104/pp.112.207753
 
10. Du H., Wu N., Fu J., Wang S., Li X., Xiao J., Xiong L. 2012. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J. Exp. Bot. 63 : 6467-6480. 
https://doi.org/10.1093/jxb/ers300
 
11. Du H., Wu N., Chang Y., Li X., Xiao J., Xiong L. 2013. Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol. Biol. 83 (4-5) : 475-488. 
https://doi.org/10.1007/s11103-013-0103-7
 
12. Geiger D., Maierhofer T., Al-Rasheid K.A., Scherzer S., Mumm P., Liese A., Ache P., Wellmann C., Marten I., Grill E., Romeis T., Hedrich R. 2011. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal. 4. ra32.
https://doi.org/10.1126/scisignal.2001346
 
13. Hu X., Liu R., Li Y., Wang W., Tai F., Xue R., Li C. 2010a. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul. 60 : 225-235. 
https://doi.org/10.1007/s10725-009-9436-2
 
14. Hu X.L., Li Y.H., Li C.H., Yang H.R., Wang W., Lu M.H. 2010b. Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J. Plant Growth Regul. 29 : 455-464. 
https://doi.org/10.1007/s00344-010-9157-9
 
15. Hu X.J., Chen D., Mclntyre C.L., Dreccer M.F., Zhang Z.B., Drenth J., Kalaipandian S., Chang H., Xue G.P. 2018. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Plant Cell Environ. 41 : 79-98. 
https://doi.org/10.1111/pce.12957
 
16. Islam M.R., Baohua F., Tingting C., Longxing T., Guanfu F. 2018. Role of abscisic acid in thermal acclimation of plants. J. Plant Biol. 61 : 255-264. 
https://doi.org/10.1007/s12374-017-0429-9
 
17. IWGSC (International Wheat Genome Sequencing Consortium). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 345 : 1251788. 
https://doi.org/10.1126/science.1251788
 
18. Jain M., Khurana J.P. 2009. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J. 276 : 3148-3162.
https://doi.org/10.1111/j.1742-4658.2009.07033.x
 
19. Kosakivska I.V., Vasyuk V.A., Voytenko L.V., Shcherbatiuk M.M., Romanenko K.O., Babenko L.M. 2020. Endogenous phytohormones of fern Polystichum aculeatum (L.) Roth gametophytes at different stages of morphogenesis in vitro culture. Cytol. Genet. 54 (1) : 23-30. 
https://doi.org/10.3103/S0095452720010089
 
20. Li H., Liu S.S., Yi C.Y., Wang F., Zhou J., Xia X.J., Shi K., Zhou Y.H., Yu J.Q. 2014a. Hydrogen peroxide mediates abscisic acid-induced HSP70 accumulation and heat tolerance in grafted cucumber plants. Plant Cell Environ. 37 : 2768-2780. 
https://doi.org/10.1111/pce.12360
 
21. Ljung K., Bhalerao R.P., Sandberg G. 2001. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 28 : 465-474. 
https://doi.org/10.1046/j.1365-313X.2001.01173.x
 
22. Maurel C., Boursiac Y., Luu D.T., Santoni V., Shahzad Z., Verdoucq L. 2015. Aquaporins in plants. Physiol. Rev. 95 : 1321-1358. 
https://doi.org/10.1152/physrev.00008.2015
 
23. McAdam S.A., Brodribb T.J., Ross J.J. 2016. Shoot-derived abscisic acid promotes root growth. Plant Cell Environ. 39 : 652-659. 
https://doi.org/10.1111/pce.12669
 
24. Mühlenbock P., Szechynska-Hebda M., Płaszczyca M., Baudo M.; Mateo A., Mullineaux P.M., Parker J.E., Karpinska B., Karpinski S. 2008. Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. Plant Cell. 20 : 2339-2356. 
https://doi.org/10.1105/tpc.108.059618
 
25. Sakata T., Oshino T., Miura S., Tomabechi M., Tsunaga Y., Higashitani N., Miyazawa Y., Takahashi H., Watanabe M., Higashitani A. 2010. Auxins reverse plant male sterility caused by high temperatures. Proc. Natl. Acad. Sci. USA. 107 : 8569-8574. 
https://doi.org/10.1073/pnas.1000869107
 
26. Shibasaki K., Uemura M., Tsurumi S., Rahman A. 2009. Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell. 21 : 3823-3838. 
https://doi.org/10.1105/tpc.109.069906
 
27. Tang R.S., Zheng J.C., Jin Z.Q., Zhang D.D., Huang Y.H., Chen L.G. 2008. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regul. 54 : 37-43. 
https://doi.org/10.1007/s10725-007-9225-8
 
28. Teale W.D., Paponov I.A., Palme K. 2006. Auxin in action: signalling, transport and the control of plant growth and development, Nat. Rev. Mol. Cell Biol. 7 (11) : 847-859. 
https://doi.org/10.1038/nrm2020
 
29. Vanstraelen M., Benková E. 2012. Hormonal Interactions in the Regulation of Plant Development. Annu. Rev. Cell Dev. Biol. 28 : 463-487.
https://doi.org/10.1146/annurev-cellbio-101011-155741
 
30. Vishwakarma K., Upadhyay N., Kumar N., Yadav G., Singh J., Mishra R., Kumar Vivek, Verma R., Upadhyay R.G., Pandey M., Sharma S. 2017. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front. Plant Sci. 8 : 161. 
https://doi.org/10.3389/fpls.2017.00161
 
31. Zhang C.X., Fu G.F., Yang X.Q., Yang Y.J., Zhao X., Chen T.T., Tao L. 2016. Heat stress effects are stronger on spikelets than on flag leaves in rice due to differences in dissipation capacity. J. Agron. Crop Sci. 202 : 394-408. 
https://doi.org/10.1111/jac.12138