Visn. Hark. nac. agrar. univ., Ser. Biol., 2019, Issue 2 (47), pp. 61-70


https://doi.org/10.35550/vbio2019.02.061




INDUCTION OF SALT RESISTANCE OF ARABIDOPSIS PLANTS OF WILD-TYPE AND SALICYLATE-DEFICIENT TRANSFORMANT NahG BY HYDROGEN SULFIDE DONOR


Т. О. Yastreb1, O. I. Horielova1, K. M. Havva1, Yu. Е. Kolupaev1, 2, A. I. Dyachenko3, O. P. Dmitriev3

1 Dokuchaev Kharkiv National Agrarian University (Kharkiv, Ukraine)
E-mail:
plant_biology@ukr.net
2 Karazin Kharkiv National University (Kharkiv, Ukraine)
3 Institute of Cell Biology and Genetic Engineering
of National Academy of Sciences of Ukraine (Kyiv, Ukraine)


Hydrogen sulfide (H2S) is currently regarded as a signal gasotransmitter molecule involved in many functions of plant organism, including adaptation to stress factors. However, the spectrum of possible adaptive reactions associated with salt resistance and induced by the H2S action has not been sufficiently investigated. Hydrogen sulfide has functional bonds with stress phytohormones, in particular with salicylic acid. At the same time, the possible role of salicylic acid in the realization of physiological (stress-protective) effects of H2S remained unexplored. We studied the effect of sodium hydrosulfide (NaHS), the hydrogen sulfide donor, on the antioxidant and osmoprotective systems, and salt resistance of Arabidopsis thaliana L. wild-type (Col-0) and salicylate-deficient NahG plants, transformed with the bacterial salicylate hydroxylase gene. It was found that transformants differed from wild-type plants by increased activity of antioxidant enzymes and high sugar content under salt stress conditions (150 mM NaCl). In both wild-type and NahG transformants treated with hydrogen sulfide donor by adding 50 μM NaHS to the nutrient medium, under salt stress it was retained high activity of superoxide dismutase and catalase, increased guaiacol peroxidase activity and sugar content, and maintained a pool of photosynthetic pigments in the leaves. Plants of both genotypes treated with the H2S donor, under stress conditions, differed in their lower content of proline and the product of lipid peroxidation malonic dialdehyde in the leaves. It was concluded that the exogenous hydrogen sulfide induction of protective systems involved in the development of salt resistance in Arabidopsis plants can occur without the participation of salicylic acid.


Key words: Arabidopsis thaliana, transformants NahG, salt stress, hydrogen sulfide, antioxidant enzymes, osmolytes

 


REFERENCES


1. Kolupaev Yu.Ye., Karpets Yu.V. 2009. Salicylic acid and plants resistance to abiotic stressors. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (17) : 19-39.
 
2. Kolupaev Yu.Ye., Karpets Yu.V. 2010. Participation of soluble carbohydrates and low-molecular nitrogen compounds in adaptive reactions of plants. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (20) : 36-53.
 
3. Kolupaev Yu.E., Ryabchun N.I., Vayner A.A., Yastreb T.O., Oboznyi A.I. 2015. Antioxidant enzyme activity and osmolyte content in winter cereal seedlings under hardening and cryostress. Russ. J. Plant Physiol. 62 (4) : 499-506. Doi: org/10.1134/S1021443715030115
https://doi.org/10.1134/S1021443715030115
 
4. Kolupaev Yu.E., Firsova E.N., Yastreb T.O., Lugovaya A.A. 2017. The participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. Appl. Biochem. Microbiol. 53 (5) : 573-579. Doi: org/10.1134/S0003683817050088
https://doi.org/10.1134/S0003683817050088
 
5. Soshinkova T.N., Radyukina N.L., Korolkova D.V., Nosov A.V. 2013. Proline and functioning of the antioxidant system in Thellungiella salsuginea plants and cultured cells subjected to oxidative stress. Russ. J. Plant Physiol. 60 (1) : 41-54. Doi: org/10.1134/S1021443713010093
https://doi.org/10.1134/S1021443713010093
 
6. Fazlieva E.R., Kiseleva I.S., Zhuikova T.V. 2012. Antioxidant activity in the leaves of Melilotus albus and Trifolium medium from man-made disturbed habitats in the Middle Urals under the influence of copper. Russ. J. Plant Physiol. 59 (3) : 333-338. Doi: org/10.1134/S1021443712030065
https://doi.org/10.1134/S1021443712030065
 
7. Shlyk A.A. 1971. Measuring of chlorophylls and carotenoids in extracts of green leaves, Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology). Ed. Pavlinova O.A. Moscow : 154-170.
 
8. Yastreb T.O., Kolupaev Yu.E., Lugovaya A.A., Dmitriev A.P. 2017. Hydrogen peroxide-induced salt tolerance in the Arabidopsis salicylate-deficient transformants NahG. Appl. Biochem. Microbiol. 53 (6) : 719-724. Doi: 10.1134/S000368381706014X
https://doi.org/10.1134/S000368381706014X
 
9. Yastreb T.O., Kolupaev Yu.E., Shvidenko N.V., Lugovaya A.A., Dmitriev A.P. 2015. Salt stress response in Arabidopsis thaliana plants with defective jasmonate signaling. Appl. Biochem. Microbiol. 51 (4) : 451-454. Doi: org/10.1134/S000368381504016X
https://doi.org/10.1134/S000368381504016X
 
10. Bates L.S., Walden R.P., Tear G.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39 : 205-210. Doi: org/10.1007/BF00018060
https://doi.org/10.1007/BF00018060
 
11. Cao Y., Zhan Z. W., Xue L. W., Du J. B., Shang J., Xu F., Yuan S., Lin H.H. 2009. Lack of salicylic acid in Arabidopsis protects plants against moderate salt stress. Z. Naturforsch. 64 (3-4) : 231-238.
https://doi.org/10.1515/znc-2009-3-414
 
12. Fang H.H., Pei Y.X., Tian B.H., Zhang, L.P., Qiao Z.J. Liu Z.Q. 2014. Ca2+ participates in H2S induced Cr6+ tolerance in Setaria italica. Chin. J. Cell Biol. 36 : 758-765.
 
13. Filipovic M.R., Jovanovic V.M. 2017. More than just an intermediate: hydrogen sulfide signalling in plants. J. Exp. Bot. 68 (17) : 4733-4736. Doi: 10.1093/jxb/erx352
https://doi.org/10.1093/jxb/erx352
 
14. Gaffney T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., Ward E., Kessmann H., Ryalsm J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science. 261 : 754-756. Doi: 10.1126/science.261.5122.754
https://doi.org/10.1126/science.261.5122.754
 
15. Gibeaut D.M., Hulett J., Cramer G.R., Seemann J.R. 1997. Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol. 115 : 317-319. Doi: org/10.1104/pp.115.2.317
https://doi.org/10.1104/pp.115.2.317
 
16. Guo H., Xiao T., Zhou H., Xie Y., Shen W. Hydrogen sulfide: a versatile regulator of environmental stress in plants. Acta Physiol. Plant. 2016. 38 : 16. Doi 10.1007/s11738-015-2038-x
https://doi.org/10.1007/s11738-015-2038-x
 
17. Hancock J.T., Whiteman M. 2014. Hydrogen sulfide and cell signaling:Team player or referee? Plant Physiol. Biochem. 78 : 37-42. Doi: 10.1016/j.plaphy.2014.02.012
https://doi.org/10.1016/j.plaphy.2014.02.012
 
18. He Q., Zhao S., Ma Q., Zhang Y., Huang L., Li G., Hao L. 2014. Endogenous salicylic acid levels and signaling positively regulate arabidopsis response to polyethylene glycol-simulated drought stress. J. Plant Growth Regul. 33 : 871-880. Doi: org/10.1007/s00344-014-9438-9
https://doi.org/10.1007/s00344-014-9438-9
 
19. Jin Z., Xue S., Luo Y., Tian B., Fang H., Li H., Pei Y. 2013. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol. Biochem. 62 : 41-46. Doi: 10.1016/j.plaphy.2012.10.017
https://doi.org/10.1016/j.plaphy.2012.10.017
 
20. Jin Z., Pei Y. Physiological implications of hydrogen sulfide in plants: pleasant exploration behind its unpleasant odour. Oxid. Med. Cell Longev. 2015. 397502. Doi: 10.1155/2015/397502
https://doi.org/10.1155/2015/397502
 
21. Joseph B., Jini D., Sujatha S. Insight into the role of exogenous salicylic acid on plants growth under salt environment. Asian J. Crop Sci. 2010. 2. : 226-235.
https://doi.org/10.3923/ajcs.2010.226.235
 
22. Kolupaev Yu.E., Karpets Yu.V., Yastreb Т.О. 2019. Induction of wheat plant resistance to stressors by donors of nitric oxide and hydrogen sulfide. In: Wheat Production in Changing Environments. Eds. M. Hasanuzzaman et al. Singapore: Springer Nature Pte Ltd. : 521-556. doi: org/10.1007/978-981-13-6883-7_21
https://doi.org/10.1007/978-981-13-6883-7_21
 
23. Kovacs I., Durner J., Lindermayr C. 2015. Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol. 208 : 860-872. Doi: 10.1111/nph.13502
https://doi.org/10.1111/nph.13502
 
24. Lee S., Kim S.-G., Park C.-M. 2010. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol. 188 : 626-637. Doi: 10.1111/j.1469-8137.2010.03378.x
https://doi.org/10.1111/j.1469-8137.2010.03378.x
 
25. Li Z.G., Yi X.Y. Li Y.T. 2014.Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. Biologia. 69 (8) : 1001-1009. Doi: org/10.2478/s11756-014-0396-2
https://doi.org/10.2478/s11756-014-0396-2
 
26. Li Z.G., Yang S.Z., Long W.B., Yang G.X., Shen Z.Z. 2013. Hydrogen sulphide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ. 36 (8) : 1564-1572. doi: 10.1111/pce.12092
https://doi.org/10.1111/pce.12092
 
27. Li Z.-G. 2015.Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal. Behav. 10 (9) : e1051278. Doi: 10.1080/15592324.2015.1051278
https://doi.org/10.1080/15592324.2015.1051278
 
28. Ma D., Ding H., Wang C., Qin H., Han Q., Hou J., Lu H., Xie Y., Guo T. 2016. Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS ONE. 11 (9) : e0163082. Doi:10.1371/journal. pone.0163082
https://doi.org/10.1371/journal.pone.0163082
 
29. Quan L.-J., Zhang B., Shi W.-W., Li H.-Y. 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J. Integr. Plant Biol. 50 (1) : 2-18. doi: 10.1111/j.1744-7909.2007.00599.x
https://doi.org/10.1111/j.1744-7909.2007.00599.x
 
30. Shakirova F.M., Sakhabutdinova A.R., Bezrukova M.V. Fatkhutdinova R.A, Fatkhutdinova D.R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164 (3) : 317-322. Doi: org/10.1016/S0168-9452(02)00415-6
https://doi.org/10.1016/S0168-9452(02)00415-6
 
31. Shi H., Ye T., Han N., Bian H., Liu X., Chan Z. 2015. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J. Integr. Plant Biol. 57: 628-640. Doi: 10.1111/jipb.12302
https://doi.org/10.1111/jipb.12302
 
32. Singh V.P., Singh S., Kumar J., Prasad S.M. 2015. Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up- regulation of the ascorbate-glutathione cycle: possible involvement of nitric oxide. J. Plant Physiol. 181 : 20-29. Doi.org/10.1016/j.jplph.2015.03.015
https://doi.org/10.1016/j.jplph.2015.03.015
 
33. van Wees S.C.M., Glazebrook J. 2003. Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid. Plant J. 33 : 733-742. Doi: org/10.1046/j.1365-313X.2003.01665.x
https://doi.org/10.1046/j.1365-313X.2003.01665.x
 
34. Yastreb T.O., Karpets Yu.V., Kolupaev Yu.E., Dmitriev A.P. 2017. Induction of salt tolerance in salicylate-deficient NahG arabidopsis transformants using the nitric oxide donor. Cytol. Genet. 51 (2) : 134-141. Doi: 10.3103/S0095452717020086
https://doi.org/10.3103/S0095452717020086
 
35. Zhao K., Fan H., Zhou S., Song J. 2003. Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under isoosmotic salt and water stress. Plant Sci. 165 : 837-844. Doi: org/10.1016/S0168-9452(03)00282-6
https://doi.org/10.1016/S0168-9452(03)00282-6