Visn. Hark. nac. agrar. univ., Ser. Biol., 2019, Issue 3 (48), p. 66-74


https://doi.org/10.35550/vbio2019.03.066




EFFECT OF HYDROGEN SULFIDE DONOR ON PIGMENT COMPLEX AND PRODUCTIVITY OF WHEAT (TRITICUM AESTIVUM L.)


E. M. Havva1, M. V. Shvydenko1, D. V. Havva1, Yu. E. Kolupaev1, 2

1Dokuchaev Kharkiv National Agrarian University

(Kharkiv, Ukraine)

E-mail: plant_biology@ukr.net

2Karazin Kharkiv National University

(Kharkiv, Ukraine)


Hydrogen sulfide (H2S) is one of the gasotransmitters involved in signal transduction in plant cells. In recent years, it has been found to be involved in growth processes and plant adaptation to stress-ors. The possibility of inducing plant resistance to adverse factors by action of hydrogen sulfide do-nors, in particular sodium hydrosulfide (NaHS), has been proved. At the same time, their physiolog-ical effects in natural conditions have not yet been investigated. In a small-plot field experiment, the influence of the NaHS-treatment of spring wheat (Triticum aestivum L.) plants of the Lyubimaya variety on growth processes, content of photosynthetic pigments, and total and grain productivity was studied. During the growing season, plants were sprayed three times (in phases of booting, earring/flowering, and milk ripeness) with NaHS solutions at concentrations of 50, 100, and 500 μM. When plants were treated with a hydrogen sulfide donor in the optimal concentration (100 μM), their linear growth was enhanced, the content of photosynthetic pigments and anthocyanins in the leaves increased, and the water deficit decreased. In the experimental variants, the total and (to a greater extent) grain productivity increased, the mass of 1000 grains increased. It was concluded that at least partially the positive effect of the sodium hydrosulfide treatment on the productivity indices is due to the stress-protective effect of the H2S donor.


Key words: Triticum aestivum, hydrogen sulfide, photosynthetic pigments, water deficit, resistance, productivity

 


REFERENCES


1. Goncharova E.A. 2005. Water Status of Cultivated Plants and its Diagnostics. St. Petersburg : 112 p.
 
2. Kolupaev Yu.E., Fіrsova E.N., Yastreb T.O., Kirichenko V.V., Ryabchun N.I. 2019. Influence of hydrogen sulfide donor on state of antioxidant system and re-sistance of wheat plants to soil drought. Russ J Plant Physiol. 66 (1) : 59-66.
https://doi.org/10.1134/S1021443719010084
 
3. Shlyk A.A. 1971. Determination of chlorophylls and ca-rotenoids in extracts of green leaves. In: Biochemical Methods in Plant Physiology (E Pavlinova O.A.), Moscow : 154-170.
 
4. Aghdama M.S., Mahmoudi R., Razavi F., Rabiei V., Soleimani A. 2018. Hydrogen sulfide treatment con-fers chilling tolerance in hawthorn fruit during cold storage by triggering endogenous H2S accumulation, enhancing antioxidant enzymes activity and promoting phenols accumulation. Sci Horticult. 238 : 264-271.
https://doi.org/10.1016/j.scienta.2018.04.063
 
5. Chen X., Chen Q., Zhang X., Li R., Jia Y., Ef A.A., Jia A., Hu L., Hu X. Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions. Plant Physiology and Biochemistry. 2016a. 104 : 174-179. 
https://doi.org/10.1016/j.plaphy.2016.02.033
 
6. Chen J., Shang Y.T., Wang W.H., Chen X.Y., He E.M., Zheng H.L., Shangguan Z. 2016b. Hydrogen sulfide-mediated polyamines and sugar changes are in-volved in hydrogen sulfide-induced drought toler-ance in Spinacia oleracea seedlings. Front.Plant Sci. 7 : 1173. 
https://doi.org/10.3389/fpls.2016.01173
 
7. Du X., Jin Z., Liu D., Yang G., Pei Y. 2017. Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana. Plant Physiology and Biochemistry. 120 : 112-119. 
https://doi.org/10.1016/j.plaphy.2017.09.028
 
8. Fu P.N., Wang W.J., Hou L.X., Liu X. 2013. Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. Acta Societatis Botanicorum Poloniae. 82 (4) : 295-302. 
https://doi.org/10.5586/asbp.2013.031
 
9. Honda K., Yamada N., Yoshida R., Ihara H., Sawa T., Akaike T., Iwai S., 2015. 8-Mercapto-Cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis. Plant Cell Physiol., 56 (8) : 1481-1489. 
https://doi.org/10.1093/pcp/pcv069
 
10. Hu K.D., Tang J., Zhao D.L., Hu L.Y., Li Y.H., Liu S., Jones R. Zhang H., 2014. Stomatal closure in sweet potato leaves induced by sulfur dioxide involves H2S and NO signaling pathways. Biol. Plant. 58 (4) : 676-680. 
https://doi.org/10.1007/s10535-014-0440-7
 
11. Janicka M., Reda M., Czyzewska K., Kabala K. 2018. Involvement of signalling molecules NO, H2O2 and H2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress. Functional Plant Biology. 45 (4) : 428-439. 
https://doi.org/10.1071/FP17095
 
12. Jin Z.P., Shen J.J., Qiao Z.J., Yang G.D., Wang R., Pei Y.X. 2011. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem. Bio-phys. Res. Commun. 414 (3) : 481-486. 
https://doi.org/10.1016/j.bbrc.2011.09.090
 
13. Kharbech O., Houmani H., Chaoui A., Corpas F.J. 2017. Alleviation of Cr(VI)-induced oxidative stress in maize (Zea mays L.) seedlings by NO and H2S donors through differential organ-dependent regula-tion of ROS and NADPH-recycling metabolisms. J. Plant Physiol. 219 : 71-80. 
https://doi.org/10.1016/j.jplph.2017.09.010
 
14. Khlestkina E.K. 2013. The adaptive role of flavonoids: emphasis on cereals. Cereal Res. Commun. 41 : 185-198. 
https://doi.org/10.1556/CRC.2013.0004
 
15. Kolupaev Yu.E., Horielova E.I., Yastreb T.O., Po-pov Yu.V., Ryabchun N.I. 2018. Phenylalanine am-monialyase activity and content of flavonoid com-pounds in wheat seedlings at the action of hypo-thermia and hydrogen sulfide donor. Ukr. Biochem. J. 90 (6) : 12-20. doi.org/10.15407/ubj90.06.012
https://doi.org/10.15407/ubj90.06.012
 
16. Kolupaev Yu.E., Karpets Yu.V., Beschasniy S.P., Dmitriev A.P. 2019. Gasotransmitters and their role in adaptive reactions of plant cells. Cytol. Genet. 53 (5) : 392-406. 
https://doi.org/10.3103/S0095452719050098
 
17. Li Q., Wang Z, Zhao Y., Zhang X., Zhang S., Bo L., Wang Y., Ding Y., An L. 2016a. Putrescine protects hulless barley from damage due to UV-B stress via H2S- and H2O2-mediated signaling pathways. Plant Cell Rep. 3 (5) : 1155-1168. 
https://doi.org/10.1007/s00299-016-1952-8
 
18. Li T., Jia K.P., Lian H.L., Yang X., Li L., Yang H.Q. 2014. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A sig-naling pathway under far-red light in Arabidopsis. Biochem. Biophys. Res. Commun. 454 (1) : 78-83.
https://doi.org/10.1016/j.bbrc.2014.10.059
 
19. Li Z.G. 2013. Hydrogen sulfide: a multifunctional gase-ous molecule in plants. Russ. J. Plant Physiol. 60 (6) : 733-740. 
https://doi.org/10.1134/S1021443713060058
 
20. Li Z.G., Long W.B., Yang S.Z., Wang Y.C., Tang J.H., Wen L., Zhu B.Yu., Min X. 2015a. Endogenous hy-drogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures. Acta Physiol. Plant. 37 : 219. 
https://doi.org/10.1007/s11738-015-1971-z
 
21. Li Z.G., Min X., Zhou Z.H. 2016b. Hydrogen sulfide: A signal molecule in plant cross-adaptation. Front. Plant Sci. Vol. 7, 1621.
https://doi.org/10.3389/fpls.2016.01621
 
22. Li Z.G., Xie L.R., Li X.J. 2015b. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seed-lings. J. Plant Physiol. 177 : 121-127. 
https://doi.org/10.1016/j.jplph.2014.12.018
 
23. Li Z.G., Yang S.Z., Long W.B., Yang G.X., Shen Z.Z. 2013. Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ. 36 (8) : 1564-1572. 
https://doi.org/10.1111/pce.12092
 
24. Li Z.G., Zhu L.P. 2015. Hydrogen sulfide donor sodium hydrosulfide-induced accumulation of betaine is in-volved in the acquisition of heat tolerance in maize seedlings. Braz. J. Bot. 391 : 31-38.
https://doi.org/10.1007/s40415-014-0106-x
 
25. Lisjak M., Teklic T., Wilson I.D. Whiteman M., Han-cock J.T. 2013. Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ. 36. (9) 1607-1616. 
https://doi.org/10.1111/pce.12073
 
26. Neill S.O., Gould K.S. 2003. Anthocyanins in leaves: light attenuators or antioxidants? Funct. Plant Biol. 30 (8) : 865-873.
https://doi.org/10.1071/FP03118
 
27. Nogues S., BakerN.R. 2000. Effects of drouht on photo-synthesis in Mediterranean plants grown under UV-B radiation. J. Exp. Bot. 51 : 1309-1317.
https://doi.org/10.1093/jexbot/51.348.1309
 
28. Rennenberg H. 1984. The fate excess of sulfur in higher plants. Annu. Rev. Plant Physiol. 35 : 121-153.
https://doi.org/10.1146/annurev.pp.35.060184.001005
 
29. Santos C.V. 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Horticult. 103 : 93-99.
https://doi.org/10.1016/j.scienta.2004.04.009
 
30. Shan C., Wang T., Zhou Y., Wang W. 2018. Hydrogen sulfide is involved in the regulation of ascorbate and glutathione metabolism by jasmonic acid in Ara-bidopsis thaliana. Biolю Plant. 62 (1) : 188-193. 
https://doi.org/10.1007/s10535-017-0740-9
 
31. Shan C.J., Zhang S.L., Li D.F., Zhao Y.Z., Tian X.L., Zhao X.L., Wu Y.X., Wei X.Y., Liu R.Q. 2011. Ef-fects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiol. Plant. 33 : 2533-2540. 
https://doi.org/10.1007/s11738-011-0746-4
 
32. Shan C., Zhang S., Zhou Y. 2017. Hydrogen sulfide is involved in the regulation of ascorbate-glutathione cycle by exogenous ABA in wheat seedling leaves under osmotic stress. Cereal Res. Commun. 45 (3) : 411-420.
https://doi.org/10.1556/0806.45.2017.021
 
33. Singh S., Kumar V., Kapoor D., Kumar S., Singh S., Dhanjal D.S., Datta S., Samuel J., Dey P., Wang S., Prasad R., Singh J. 2019. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions. Physiol. Plant. 
https://doi.org/10.1111/ppl.13002
 
34. Sun Y., Zhang W., Zeng T., Nie Q., Zhang F., Zhu L. 2015. Hydrogen sulfide inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism. Food Chem. 177 : 376-381.
https://doi.org/10.1016/j.foodchem.2015.01.065
 
35. Tian B., Zhang Y., Jin Z., Liu Z., Pei Y. 2017. Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet. Front. Biosci. (Landmark). 22: 530-538.
https://doi.org/10.2741/4500
 
36. Yamasaki H., Cohen M.F. 2016. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and ani-mal physiologies. Nitric Oxide. 55-56 : 91-100. 
https://doi.org/10.1016/j.niox.2016.04.002
 
37. Yastreb T.O., Kolupaev Yu.E., Havva E.N., Shkliarev-skyi M.A., Dmitriev A.P. 2019. Calcium and com-ponents of lipid signaling in implementation of hy-drogen sulfide influence on state of stomata in Ara-bidopsis thaliana. Cytol. Genet. 53 (2) : 99-105. 
https://doi.org/10.3103/S0095452719020099
 
38. Ye S.C., Hu L.Y., Hu K.D., Li Y.-H., Yan H., Zhang XQ, Zhang H. 2015. Hydrogen sulfide stimulates wheat grain germination and counteracts the effect of oxidative damage caused by salinity stress. Cereal Res. Commun. 43 (2) : 213-224.
https://doi.org/10.1556/CRC.2014.0037
 
39. Ziogas V., Molassiotis A., Fotopoulos V., Tanou G. 2018. Hydrogen sulfide: A potent tool in postharvest fruit biology and possible mechanism of action. Plant Sci. 9 : 1375.
https://doi.org/10.3389/fpls.2018.01375