Visn. Hark. nac. agrar. univ., Ser. Biol., 2019, Issue 3 (48), p. 52-65


https://doi.org/10.35550/vbio2019.03.052




INFLUENCE OF EXOGENOUS POLYAMINES ON THE STATE OF ANTIOXIDANT AND OSMOPROTECTIVE SYSTEMS OF WHEAT SEEDLINGS AT DEHYDRATION


A. I. Kokorev1, Yu. E. Kolupaev1, 2, T. O. Yastreb1, E. I. Horielova1

1Dokuchaev Kharkiv National Agrarian University

(Kharkiv, Ukraine)

E-mail: plant_biology@ukr.net

2Karazin Kharkiv National University

(Kharkiv, Ukraine)


Polyamines are stress metabolites that perform multiple functions in plant cells. The literature data on the effect of exogenous polyamines on components of antioxidant and osmoprotective systems are contradictory, and comparative studies of the protective effect of different polyamines are not enough. We studied the effect of exogenous putrescine and spermine on the resistance of wheat seedlings (Triticum aestivum L.) of Dosconala variety to dehydration caused by an action of 12% PEG 6000. Both polyamines in a fairly wide range of concentrations softened the growth inhibitory effect of osmotic stress. In the variants with polyamines treatment, not only the growth of shoots and roots, but also the mass ratio of shoot/root increased under the action of PEG 6000. The maximum positive effect was observed when using putrescine and spermine at 1 mM concentrations, while the stress-protective effect of spermine was more noticeable than the effect of putrescine. Treatment with both polyamines prevented an increase in the content of hydrogen peroxide in shoots of seedlings caused by osmotic stress. In addition, the effect of putrescine and spermine on the seedlings prevented a decrease in the activity of superoxide dismutase caused by stress, but did not have a significant effect on the activity of catalase and guaiacol peroxidase. Treatment with putrescine caused an increase in the content of proline seedlings under osmotic stress, while under the influence of spermine it decreased. Exogenous polyamines did not significantly affect the sugar content, but contributed to an increase in the content of anthocyanins in the shoots. In addition, under the influence of spermine there was an increase in the content of colorless flavonoids, absorbing UV-B. The conclusion is made about the complex and partly specific effect of polyamines on functioning of individual components of stress-protective systems of wheat seedlings.  


Key words: Triticum aestivum, putrescine, spermine, osmotic stress, superoxide dismutase, proline, flavonoid compounds

 


REFERENCES


1. Aronova E.E., Shevyakova N.I., Stetsenko L.A., Kuznetsov Vl.V. 2005. Cadaverine-induced induction of superoxide dismutase gene expression in Mesembryanthemum crystallinum L. Dokl. Biol. Sci. 403 (1-6) : 257-259.
https://doi.org/10.1007/s10630-005-0104-z
 
2. Karpets Yu.V., Kolupaev Yu.E., Yastreb T.O., Oboznyi A.I. 2015. Effects of NO-status modification, heat hardening, and hydrogen peroxide on the activity of antioxidant enzymes in wheat seedlings. Russ. J. Plant Physiol. 62 (3) : 292-298.
https://doi.org/10.1134/S1021443715030097
 
3. Kokorev A.I., Shvydenko N.V., Yastreb T.O., Kolupaev Yu.E. 2018. Induction of heat resistance and antioxidant enzymes of wheat seedlings by exogenous polyamines. Bull. Kharkiv Natl. Agrar. Univ. Ser. Biology (Visn. Hark. nac. agrar. univ., Ser. Biol.). 3 (45) : 85-93.
https://doi.org/10.35550/vbio2018.03.085
 
4. Kolupaev Yu.E., Vayner A.A., Yastreb T.O. 2014. Proline: physiological functions and regulation of its content in plants under stress conditions. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (32) : 6-22.
 
5. Kolupaev Yu.E., Ryabchun N.I., Vayner A.A., Yastreb T.O., Oboznyi A.I. 2015. Antioxidant enzyme activity and osmolyte content in winter cereal seedlings under hardening and cryostress. Russ. J. Plant Physiol. 62 (4) : 499-506.
https://doi.org/10.1134/S1021443715030115
 
6. Kolupaev Yu.E., Firsova E.N., Yastreb T.O., Lugovaya, A.A. 2017. The participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. Appl. Biochem. Microboil. 53 (3) : 573-579. doi. org/10.1134/S0003683817050088
https://doi.org/10.1134/S0003683817050088
 
7. Kolupaev Yu.E., Karpets Yu.V., Kabashnikova L.F. Antioxidative System of Plants: Cellular Compartmentalization, Protective and Signaling Functions, Mechanisms of Regulation (Review). Appl Biochem Microbiol (2019) 55(5): 441-459.
https://doi.org/10.1134/S0003683819050089
 
8. Kolupaev Yu.E., Kokorev A.I. 2019. Antioxidant system and plant resistance to water deficit. Fiziol. rast. genet. 51 (1) : 28-54.
https://doi.org/10.15407/frg2019.01.028
 
9. Korolkova D.V., Radyukina N.L., Soshinkova T.N., Kuznetsov V.V., Mapelli S. Effect of spermine treatment on the functioning of Thellungiella salsuginea antioxidant system. Russ. J. Plant Physiol. 2014. 61(1) : 63-69.
https://doi.org/10.1134/S1021443714010075
 
10. Kuznetsov Vl.V., Radyukina N.L., Shevyakova N.I. 2006. Polyamines and stress: Biological role, metabolism, and regulation. Russ. J. Plant Physiol. 53 (5) : 583-604. 
https://doi.org/10.1134/S1021443706050025
 
11. Lei Y. 2008. Physiological responses of Populus przewalskii to oxidative burst caused by drought stress. Russ. J. Plant Physiol. 55 : 857.
https://doi.org/10.1134/S1021443708060186
 
12. Paramonova N.V., Shevyakova N.I., Shorina M.V., Stetsenko L.A., Rakitin V.Yu., Kuznetsov Vl.V. 2003. The effect of putrescine on the apoplast ultrastructure in the leaf mesophyll of Mesembryanthemum crystallinum under salinity stress. Russ. J. Plant Physiol. 50 (5) : 587-598.
https://doi.org/10.1023/A:1025623704298
 
13. Radyukina N.L., Shashukova A.V., Mapelli S., Shevyakova N. I., Kuznetsov Vl.V. 2010. Proline controls the level of polyamines in common sage plants under normal conditions and at UV-B irradiation. Russ. J. Plant Physiol. 57 : 422.
https://doi.org/10.1134/S1021443710030155
 
14. Rakitin V.Y., Prudnikova O.N., Karyagin V.V., Rakitina T.Ya., Vlasov P.V., Borisova T.A., Novikova G.V., Moshkov I.E. 2008. Ethylene evolution and ABA and polyamine contents in Arabidopsis thaliana during UV-B stress. Russ. J. Plant Physiol. 55 (3) : 321-327. 
https://doi.org/10.1134/S1021443708030059
 
15. Sin'kevich M.S., Deryabin A.N. Trunova T.I. 2009. Characteristics of oxidative stress in potato plants with modified carbohydrate metabolism. Russ. J. Plant Physiol. 56 (2): 168.
https://doi.org/10.1134/S1021443709020046
 
16. Yastreb T.O., Kolupaev Yu.E., Lugovaya A.A., Dmitriev A.P. 2016. Content of Osmolytes and flavonoids under salt stress in arabidopsis thaliana plants defective in jasmonate signaling. Appl. Biochem. Microbiol. 52 (2) : 210-215.
https://doi.org/10.1134/S0003683816020186
 
17. Alet A.I., Sanchez D.H., Cuevas J.C., del Valle Se., Altabella T., Tiburcio A.F., Marco F., Ferrando A., Espasandín F.D., González M.E., Ruiz O.A., Carrasco P. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal. Behav. 2011. 6 (2) : 278-286.
https://doi.org/10.4161/psb.6.2.14702
 
18. Cakmak T., Atici O. 2009. Effects of putrescine and low temperature on the apoplastic antioxidant enzymes in the leaves of two wheat cultivars. Plant Soil Environ. 55 : 320-326.
https://doi.org/10.17221/1037-PSE
 
19. Cheng D.-G., Kao C.-H. 2010. Effects of exogenous spermine on polyethylene glycol-induced responses in rice leaves. Crop Environ. Bioinform. 7 : 233-242.
 
20. Flores H.E., Galston A.W. 1984. Osmotic stress-induced polyamine accumulation in cereal leaves'. II. Relation to amino acid pools. Plant Physiol. 75 : 110-113.
https://doi.org/10.1104/pp.75.1.110
 
21. Ghosh N., Das S.P., Mandal C., Gupta S., Das K., Dey N., Adak M.K. 2012. Variations of antioxidative responses in two rice cultivars with polyamine treatment under salinity stress. Physiol. Mol. Biol. Plants. 18 (4) : 301-313.
https://doi.org/10.1007/s12298-012-0124-8
 
22. Gill S.S., Tuteja N. 2010. Polyamines and abiotic stress tolerance in plants. Plant Signal. Behav. 5 : 26-33.
https://doi.org/10.4161/psb.5.1.10291
 
23. Grzesiak M., Filek M., Barbasz A., Kreczmer B. Hartikainen H. 2013. Relationships between polyamines, ethylene, osmoprotectants and antioxidant enzymes activities in wheat seedlings after short-term PEG- and NaCl-induced stresses. Plant Growth Regul. 69 : 177-189.
https://doi.org/10.1007/s10725-012-9760-9
 
24. Gupta K., Dey A., Gupta B. 2013. Plant polyamines in abiotic stress responses. Acta Physiol. Plant. 35 : 2015-2036.
https://doi.org/10.1007/s11738-013-1239-4
 
25. Ha H.C., Sirisoma N.S., Kuppusamy P., Zweier J.L., Woster P.M., Casero R.A.Jr. 1998. The natural polyamine spermine functions directly as a free radical scavenger. Proc. Natl. Acad. Sci. USA. 95 : 11140-11145.
https://doi.org/10.1073/pnas.95.19.11140
 
26. Khlestkina E.K. 2013. The adaptive role of flavonoids: emphasis on cereals. Cereal Res. Commun. 41 : 185-198. 
https://doi.org/10.1556/CRC.2013.0004
 
27. Kotakis C., Theodoropoulou E., Tassis K., Oustamanolakis C., Ioannidis N.E., Kotzabasis K. Putrescine, a fast-acting switch for tolerance against osmotic stress. J. Plant Physiol. 2014. 171 : 48-51.
https://doi.org/10.1016/j.jplph.2013.09.015
 
28. Larher F., Aziz A., Deleu C., Lemesle P., Ghaffar A., Bouchard F., Plasman M. 1998. Suppression of the osmoinduced proline response of rapeseed leaf discs by polyamines. Physiol. Plant. 102 : 139-147.
https://doi.org/10.1034/j.1399-3054.1998.1020118.x
 
29. Li Z., Peng Y., Zhang X.-Q., Pan M.-H., Ma X., Huang L.-K., Yan Y.-H. 2014. Exogenous spermidine improves water stress tolerance of white clover (Trifolium repens L.) involved in antioxidant defence, gene expression and proline metabolism. Plant Omics J. 7 (6) : 517-526.
 
30. Li Z., Jing W., Peng Y., Zhang X.Q., Ma X., Huang L.K., Yan-hong Y. 2015. Spermine alleviates drought stress in white clover with different resistance by influencing carbohydrate metabolism and dehydrins synthesis. PLOS ONE.
https://doi.org/10.1371/journal.pone.0120708
 
31. Li Z., Zhang Y., Zhang,X., Peng Y., Merewitz E., Ma X., Linkai H., Yanhong Y. 2016. The alterations of endogenous polyamines and phytohormones induced by exogenous application of spermidine regulate antioxidant metabolism, metallothionein and relevant genes conferring drought tolerance in white clover. Environ. Exp. Bot. 124 : 22-38.
https://doi.org/10.1016/j.envexpbot.2015.12.004
 
32. Li H.P., Dongc B.H., Zhang Y.Y., Liu Z.P., Liu Y.L. 2004. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci. 166 : 1261-126.
https://doi.org/10.1016/j.plantsci.2003.12.039
 
33. Mellidou I., Karamanoli K., Beris D., Haralampidis K., Constantinidou H.A., Roubelakis-Angelakis K.A. 2017. Underexpression of apoplastic polyamine oxidase improves thermotolerance in Nicotiana tabacum. J. Plant Physiol. 218 : 171-174. 
https://doi.org/10.1016/j.jplph.2017.08.006
 
34. Mohamed S.A., Ahmed H.S., El-Baowab A.A. 2009. Effect of chitosan, putrescine and irrigation levels on the drought tolerance of sour orange seedlings. Russ. J. Plant Physiol. 56 : 168.
https://doi.org/10.1134/S1021443709020046
 
35. Mostofa M.G., Yoshida N., Fujita M. 2014. Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regul. 73 (1) : 31-44. 
https://doi.org/10.1007/s10725-013-9865-9
 
36. Monteiro J.G., Cruz F.J.R., Nardin M.B., Santos D.M.M. 2014. Growth and proline content in pigeon pea seedlings subjected to osmotic stress and to exogenous putrescine. Pesq. Agropec. Bras., Brasilia. 49(1) : 18-25. 
https://doi.org/10.1590/S0100-204X2014000100003
 
37. Nahar K., Hasanuzzaman M., Alam M. M., Rahman A., Mahmud Jubayer-Al, Suzuki T., Fujita M. 2019a. Insights into spermine-induced combined high temperature and drought tolerance in mung bean: osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma. 
https://doi.org/10.1007/s00709-016-0965-z
 
38. Nahar K., Motiar R., Hasanuzzaman M. Alam Md.M., Anisur R., Suzuki T. Fujita M. 2019b. Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings. Environ. Sci. Pollut. Res. 
https://doi.org/10.1007/s11356-016-7295-8
 
39. Nayyar H., Chander S. 2004. Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J. Agron. Crop Sci. 190 : 355-365. 
https://doi.org/10.1111/j.1439-037X.2004.00106.x
 
40. Pal M., Szalai G., Janda T. 2015. Speculation: Polyamines are important in abiotic stress signaling. Plant Sci. 237 : 16-23. 
https://doi.org/10.1016/j.plantsci.2015.05.003
 
41. Pál M., Tajti J., Szalai G., Peeva V., Balázs V., Janda T. 2018. Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Sci. Rep. 8 : 128-139. 
https://doi.org/10.1038/s41598-018-31297-6
 
42. Peynevandi K.M., Razavi S.M., Zahri S. 2018. The ameliorating effects of polyamine supplement on physiological and biochemical parameters of Stevia rebaudiana Bertoni under cold stress. Plant Production Sci. 21 (2) : 123-131. 
https://doi.org/10.1080/1343943X.2018.1437756
 
43. Prabhavathi V.R., Rajam V.R. 2007. Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol. 24 (3) : 273-282. 
https://doi.org/10.5511/plantbiotechnology.24.273
 
44. Roychoudhury A.,Basu S., Sengupta D.N. 2011. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J. Plant Physiol. 168 : 317-328. 
https://doi.org/10.1016/j.jplph.2010.07.009
 
45. Sagisaka S. 1976. The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiol. 57 (2) : 308-309.
https://doi.org/10.1104/pp.57.2.308
 
46. Saha J., Brauer E.K., Sengupta A., Popescu S.C., Gupta K., Gupta B. 2015. Polyamines as redox homeostasis regulators during salt stress in plants. Front. Environ. Sci. 3 : 21. 
https://doi.org/10.3389/fenvs.2015.00021
 
47. Scaramagli S., Biondi S., LeoneAntonella, GrilloS., Torrigiani P. 2000. Acclimation to low water potential in potato cell suspension cultures leads to changes in putrescine metabolism. Plant Physiol. Biochem. 38 (4) : 345-351.
https://doi.org/10.1016/S0981-9428(00)00750-6
 
48. Szalai G., Pap M., Janda T. 2009. Light-induced frost tolerance differs in winter and spring wheat plants. J. Plant Physiol. 166 : 1826-1831.
https://doi.org/10.1016/j.jplph.2009.04.016
 
49. Tanou G., Ziogas V., Belghazi M., Christou A., Filippou P., Job D., Fotopoulos V., Molassiotis A. 2014. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ. 37 (4) : 864-885. 
https://doi.org/10.1111/pce.12204
 
50. Yang Y., Zhang Y., Wei X., You J., Wang W., Lu J., Shi R. 2011. Comparative antioxidativer esponses and proline metabolism in two wheat cultivars under short termlead stress. Ecotoxicol. Environ. Safety. 74 : 733-740. 
https://doi.org/10.1016/j.ecoenv.2010.10.035
 
51. Zeid I.M., Shedeed Z.A. 2006. Response of alfalfa to putrescine treatment under drought stress. Biol. Plant. 50 (4) : 635-640.
https://doi.org/10.1007/s10535-006-0099-9