Visn. Hark. nac. agrar. univ., Ser. Biol., 2019, Issue 3 (48), p. 28-51


https://doi.org/10.35550/vbio2019.03.028




DONORS OF NITRIC OXIDE AND THEIR APPLICATION FOR INCREASE IN PLANTS RESISTANCE TO ACTION OF ABIOTIC STRESSORS


Yu. V. Karpets

Dokuchaev Kharkiv National Agrarian University

(Kharkiv, Ukraine)

E-mail: plant_biology@ukr.net


Nitric oxide (II) – NO – is considered as one of the key signal mediators-gasotransmitters in animal and plant cells. NO has the wide spectrum of biological effect at the expense of radical nature, which allows it both to activate chain free-radical reactions, and to suppress them, and also to act in the role of both reductant, and oxidizer. Reactive nitrogen species are capable to influence the functional activity of proteins through the processes of nitrosylation and nitridation. Also NO is involved to the transduction of hormonal signals, regulation of cellular cycle of plant cell, processes of differentiation and morphogenesis of plants, and adaptation to stressors. The large array of experimental data, testifying to the ability of nitric oxide to increase in the plants resistance to stressors of various natures, is received by the treatment of plant objects with donors of NO. There are over 300 compounds, belonging to about 15 classes, which can act as donors of nitric oxide. Now the most common NO donor, which is used both for scientific research and for practical purposes, is sodium nitroprusside (SNP). The review analyzes literature data on the influence of SNP and other donors of nitric oxide on the resistance of plants to hypo- and hyperthermia, drought, salt stress, influence of heavy metals. Information on the modification of antioxidative system by NO donors, their influence on the accumulation of compatible osmolytes, state of stomata, and other physiological and biochemical processes, that are important for plant resistance to adverse factors, are considered.


Key words: nitric oxide (NO), donors of NO, stressors, resistance, antioxidative system

 


REFERENCES


1. Bakakina Y.S., Dubovskaya L.V., Volotovski I.D. 2009. Heat stress modulated endogenous levels of NO and cGMP in Arabidopsis thaliana seedlings. Vesti Nats. Akad. Navuk Belarusi. Ser. Biyal. Navuk. 4 : 34-39.
 
2. Vanin A.F. 1999. Nobel prize winners for physiology and medicine (1998). Pripoda. 1 : 1-7.
 
3. Vanin A.F. 2000. Nitric oxide in biomedical research. Vestnik Ross. AMN. (4) : 3-5.
 
4. Vladimirov Yu.A. 2000. Free radicals in biological systems. Sorosovskiy Obrazovatel'nyi Zhurnal. 6 (12) : 13-19.
 
5. Glyan'ko А. К., Ischenko A. А. 2017. Reactive oxygen and nitrogen species as possible mediators of system resistance in Fabaceae affected by rhizobial infection. Visn. Hark. nac. agrar. univ., Ser. Biol. 1 (40) : 9-20.
 
6. Dudar A.I. 2015. The discovery and study of nitric oxide in biological systems: a retrospective analysis. Nauka. Mysl'. 6 : 8-13.
 
7. Zhuk I.V., Musienko M.M. 2010. Effect of nitric oxide on wheat plants in drought conditions. Visnyk Agrarnoi Nauky. 5 : 32-34.
 
8. Zelenin K.N. 1997. Nitric oxide (II): new features of the long-known molecule. Sorosovskiy Obrazovatel'nyi Zhurnal. 10 : 105-110.
 
9. Zelenin K.N., Nozdrachev A.D. 2001. Nitroglycerin and the people around it. Vestnik Obrazovaniya i Razvitiya Nauki RAEN. 5 (2) : 166-175.
 
10. Karpets Yu. V. 2016. Influence of NO donor on content of pigments in leaves, growth and productivity of spring wheat (Triticum aestivum L.). Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (39) : 48-56.
 
11. Karpets Yu.V., Kolupaev Yu.E. 2017. Functional interaction of nitric oxide with reactive oxygen species and calcium ions at development of plants adaptive responses. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (41) : 6-31.
https://doi.org/10.35550/vbio2017.02.006
 
12. Karpets Yu.V., Kolupaev Yu.E. 2018. Participation of nitric oxide in 24-epibrassinolide-induced heat resistance of wheat coleoptiles: functional interactions of nitric oxide with reactive oxygen species and Ca ions. Russ. J. Plant Physiol. 65 (2) : 177-185.
https://doi.org/10.1134/S1021443718010053
 
13. Karpets Yu.V., Kolupaev Yu.E., Vayner A.A. 2015a. Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance. Russ. J. Plant Physiol. 62 (1) : 65-70.
https://doi.org/10.1134/S1021443714060090
 
14. Karpets Yu.V., Kolupaev Yu.E., Grigorenko D.O., Firsova K.M. 2016a. Response of barley plants of various genotypes to soil drought and influence of nitric oxide donor. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (38) : 94-105.
 
15. Karpets Yu.V., Kolupaev Yu.E., Kolomoyets B.A., Shvydenko N.V., Miroshnichenko N.N. 2018a. Influence of sodium nitroprusside as a NO-donor on the productivity and resistance of barley to adverce factors. Agrokhimiya. 6 : 53-62.
 
16. Karpets Yu.V., Kolupaev Yu.E., Kosakivska I.V. 2016b. Nitric oxide and hydrogen peroxide as signal mediators at induction of heat resistance of wheat plantlets by exogenous jasmonic and salicylic acids. Fiziol. rast. genet. 48 (2) : 158-166.
https://doi.org/10.15407/frg2016.02.158
 
17. Karpets Yu.V., Kolupaev Yu. E., Lugovaya A.A., Shvidenko N.V., Yastreb T.O. 2018c. Effects of nitrate and L-arginine on content of nitric oxide and activities of antioxidant enzymes in roots of wheat seedlings and their heat resistance. Russ. J. Plant Physiol. 65 (6) : 908-915.
https://doi.org/10.1134/S1021443718050096
 
18. Karpets Yu.V., Kolupaev Yu. E., Shvidenko N.V., Yastreb T.O. 2015b. Influence of sodium nitroprusside on pigmental complex of leaves and productivity of millet in adverse conditions. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (36) : 38-44.
 
19. Karpets Yu.V., Kolupaev Yu. E., Yastreb T.O. 2011. Effect of sodium nitroprusside on heat resistance of wheat coleoptiles: Dependence on the formation and scavenging of reactive oxygen species. Russ. J. Plant Physiol. 1027.
https://doi.org/10.1134/S1021443711060094
 
20. Karpets Yu.V., Kolupaev Yu. E., Yastreb T.O., Lugovaya A.A. 2017. Activity of antioxidant enzymes in leaves of barley plants of various genotypes under influence of soil drought and sodium nitroprusside. Fiziol. rast. genet. 49 (1) : 71-81.
https://doi.org/10.15407/frg2017.01.071
 
21. Karpets Yu.V., Kolupaev Yu. E., Yastreb T.O., Oboznyi A.I. 2015c. Effects of NO-status modification, heat hardening, and hydrogen peroxide on the activity of antioxidant enzymes in wheat seedlings. Russ. J. Plant Physiol. 62 (3) : 292-298.
https://doi.org/10.1134/S1021443715030097
 
22. Karpets Yu.V., Kolupaev Yu. E., Yastreb T.O., Oboznyi A.I. 2016c. Induction of heat resistance in wheat seedlings by exogenous calcium, hydrogen peroxide, and nitric oxide donor: functional interaction of signal mediators. Russ. J. Plant Physiol. 63 (4) : 490-498.
https://doi.org/10.1134/S1021443716040075
 
23. Karpets Yu.V., Shklyarevskiy M.A., Lugova G.A. 2018d. Induction of nonspecific resistance of Scotch pine seedlings under influence of NO donor sodium nitroprusside. 1. Increase of resistance against root rot disease. Visn. Hark. nac. agrar. univ., Ser. Biol. 1 (43) : 57-65.
https://doi.org/10.35550/vbio2018.01.057
 
24. Karpets Yu.V., Shklyarevskiy M.A., Lugova G.A. 2018e. Induction of nonspecific resistance of Scotch pine seedlings under influence of NO donor sodium nitroprusside. 2. Increase in resistance against soil drought. Visn. Hark. nac. agrar. univ., Ser. Biol. 1 (43) : 66-75.
https://doi.org/10.35550/vbio2018.01.066
 
25. Karpets Yu. V. 2018.Influence of sodium nitroprusside on growth of pedunculate oak seedlings and defeat by powdery mildew of their leaf surface. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (44) : 81-93.
https://doi.org/10.35550/vbio2018.02.081
 
26. Karpets Yu.V., Kolupaev Yu. E., Shvidenko N.V., Dmitriev O.P. 2011. Effects of exogenous nitric oxide (NO) on the generation of superoxide anion-radical and heat resistance of wheat coleoptilesі. Reports of the National Academy of Sciences of Ukraine. 9 : 147-152.
 
27. Kolupaev Yu. E., Karpets Yu.V., Yastreb T.O., Lugovaya A.A. 2018. Combined Effect of salicylic acid and nitrogen oxide donor on stress-protective system of wheat plants under drought conditions. Appl. Biochem.Microbiol. 54 (4) : 400-407.
https://doi.org/10.1134/S0003683818040099
 
28. Kuznetsova V.L., Soloveva A.G. 2015. NItric oxide: properties, biological role, mechanisms of action. Sovremennye Problemy Nauki i Obrazovaniya. 4 : 24-29.
 
29. Malkoch A.V., Maidannik V.G., Kurbanova E.G. 2000. The physiological role of nitric oxide in organism. Nefrologiya i Dializ. 2 (1-2) : 165-169.
 
30. Mamaeva A.S., Fomenkov A.A., Nosov A.V. Moshkov I.E., Mur L.A.J., Hall M.A., Novikova G.V. 2015. Regulatory role of nitric oxide in plants. Russ. J. Plant Physiol. 62 (4) : 427-440.
https://doi.org/10.1134/S1021443715040135
 
31. Menshikova E.B., Zenkov N.K., Reutov V.P. 2000. Nitric oxide and NO-synthases in mammals in different functional states. Biochemistry (Mosc.). 65 (4) : 409-426.
 
32. Petrenko Yu.M., Shashurin D.A., Titov V.Yu. 2001. New sources of nitrogen oxide: their poossible physiological role and significance. Eksperimental'naya i Klinicheskaya Farmakologiya. 2 : 72-79.
 
33. Solovieva A.G., Kuznetsova V.L., Peretyagin S.P., Didenko N.V., Dudar A.I. 2016. Role of nitric oxide in processes of free radical oxidation. Vestnik Rossiiskoi Voenno-Meditsinskoi Akademii. 1 : 228-233.
 
34. Stepanov Y.M., Kononov I.N., Zhurbina A.I., Filippova A.Y. 2004. Arginine in medical practice. Zhurnal AMN Ukrainy. 10 (1) : 340-352.
 
35. Sul'man R. 1993. Alfred Nobel's Testament: The History of the Nobel Prizes. Moscow : 142 c.
 
36. Shkliarevskyi M. A., Karpets Yu. V., Lugova G. A., Horielova O. I. Combined influence of sodium nitroprusside and 24-epibrassinolide on redox-homeostasis and heat resistance of wheat plantlets. . Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (47) : 71-81.
https://doi.org/10.35550/vbio2019.02.071
 
37. Abdel-Kader D.Z.E. 2007. Role of nitric oxide, glutathione and sulfhydryl groups in zinc homeostasis in plants. Amer. J. Plant Physiol. 2 (2) : 59-75.
https://doi.org/10.3923/ajpp.2007.59.75
 
38. Ahmad P., Latef A.A.A., Hashem A. Abd-Allah E.F., Gucel S., Tran L.S.P. 2016. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front. Plant Sci. 7 : 347. doi: 10.3389/fpls.2016.00347
https://doi.org/10.3389/fpls.2016.00347
 
39. Aldoshin S.M., Sanina N.A., Davydov M.I., Chazov E.I. 2016. A new class of nitric oxide donors. Herald of the Russian Academy of Sciences. 86 (3) : 158-163.
https://doi.org/10.1134/S1019331616030096
 
40. Ali Q., Daud M.K., Haider M.Z. Ali S., Rizwan M., Aslam N., Noman A., Iqbal N., Shahzad F., Deeba F., Ali I., Zhu S.J. 2017. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol. Biochem. 119 : 50-58.
https://doi.org/10.1016/j.plaphy.2017.08.010
 
41. Antoniou C., Savvides A., Christou A., Fotopoulos V. 2016. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement. Curr. Opin. Plant Biol. 33. : 101-107.
https://doi.org/10.1016/j.pbi.2016.06.020
 
42. Arasimowicz-Jelonek M., Floryszak-Wieczorek J., Gwóźdź E.A. 2011. The message of nitric oxide in cadmium challenged plants. Plant Sci. 181 : 612-620.
https://doi.org/10.1016/j.plantsci.2011.03.019
 
43. Arasimowicz-Jelonek M., Floryszak-Wieczorek J., Kubis J. 2009. Involvement of nitric oxide in water stress-induced responses of cucumber roots. Plant Sci. 177 : 682-690.
https://doi.org/10.1016/j.plantsci.2009.09.007
 
44. Barand A., Nasibi F., ManouchehriKalantari Kh. 2015. The Effect of arginine pretreatment in the increase of cold tolerance in Pistacia vera L. in vitro. Russ. Agricult. Sci. 41 (5) : 340-346.
https://doi.org/10.3103/S1068367415050043
 
45. Bates J.N., Baker M.T., Guerra Jr.R, Harrison D.G. 1991. Nitric oxide generation from nitroprusside by vascular tissue: evidence that reduction of the nitroprusside anion and cyanide loss are required. Biochem. Pharmacy. 42 : S157-S165.
https://doi.org/10.1016/0006-2952(91)90406-U
 
46. Baxter A., Mittler R., Suzuki N. 2014. ROS as key players in plant stress signalling.. J. Exp. Bot. 65 : 1229-1240.
https://doi.org/10.1093/jxb/ert375
 
47. Bent H.A. 1963. Dimers of nitrogen dioxide. II. Structure and bonding. Inorganic Chemistry. 2 (4) : 747-752.
https://doi.org/10.1021/ic50008a020
 
48. Bibi A., Majid S.A., Ulfat A. Khatoon S., Munir A., Javed G. 2017. Effect of nitric oxide seed priming on chilling inducedwater related physiological attributes in germinating wheat. J. Animal Plant Sci. 27 : 186-191.
 
49. Buet A., Moriconi J.I., Santa-María G.E., Simontacchi M. 2014. An exogenous source of nitric oxide modulates zinc nutritional status in wheat plants. Plant Physiol. Biochem. 83 : 337-345.
https://doi.org/10.1016/j.plaphy.2014.08.020
 
50. Burney S., Tamir S., Gal A., Tannenbaum S.R. 1997. A mechanistic analysis of nitric oxide-induced cellular toxicity. Nitric oxide. 1 (2) : 130-144.
https://doi.org/10.1006/niox.1996.0114
 
51. Butler A.R., Nicholson R. 2003. Life, death and nitric oxide. Cambridge, UK: RSC. 157 p.
 
52. Chiesa J.J., Baidanoff F.M., Golombek D.A. 2018. Don't just say NO: differential pathways and pharmacological responses to diverse nitric oxide donors. Biochemical Pharmacology. 156 : 1-9.
https://doi.org/10.1016/j.bcp.2018.08.002
 
53. Corpas F.J., Palma J.M. 2018. Assessing nitric oxide (NO) in higher plants: an outline. Nitrogen. 1 (1) : 12-20.
https://doi.org/10.3390/nitrogen1010003
 
54. Courtois C., Besson A., Dehan J. Bourque S., Dobrowolska G., Pugin A. Wendehenne D. 2008. Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. J. Exp. Bot. 59 : 155-163.
https://doi.org/10.1093/jxb/erm197
 
55. Crawford N.M., Guo F.Q. 2005. New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci. 10 : 195-200.
https://doi.org/10.1016/j.tplants.2005.02.008
 
56. Culotta E., Koshland D.E. 1992. NO news is good news. Science. 258 : 1862-1865.
https://doi.org/10.1126/science.1361684
 
57. Davis K.L., Martin E., Turko I.V., Murad F. 2001. Novel effects of nitric oxide. Annual review of pharmacology and toxicology. 41 (1) : 203-236.
https://doi.org/10.1146/annurev.pharmtox.41.1.203
 
58. Delledonne M., Xia Y., Dixon R.A., Lamb C. 1998. Nitric oxide functions as a signal in plant disease resistance. Nature. 394 : 585-588.
https://doi.org/10.1038/29087
 
59. Desikan R., Griffiths R., Hancock J., Neill S. 2002. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 99 : 16314-16318.
https://doi.org/10.1073/pnas.252461999
 
60. Diniz M.C., Olivon V.C., Tavares L.D., Simplicio J.A., Gonzaga N.A., de Souza D.G., Bendhack L.M., Tirapelli C.R., Bonaventura D. 2017. Mechanisms underlying sodium nitroprusside-induced tolerance in the mouse aorta: Role of ROS and cyclooxygenase-derived prostanoids. Life sciences. 176 : 26-34.
https://doi.org/10.1016/j.lfs.2017.03.016
 
61. Dong Y., Xu L., Wang Q., Fan Z., Kong J., Bai X. 2014. Effects of exogenous nitric oxide on photosynthesis, antioxidative ability, and mineral element contents of perennial ryegrass under copper stress. J. Plant Interact. 9 : 402-411.
https://doi.org/10.1080/17429145.2013.845917
 
62. Du S.T., Liu Y., Zhang P., Liu H.J., Zhang X.Q., Zhang R.R. 2015. Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.). Food Chem. 173 : 905-1011.
https://doi.org/10.1016/j.foodchem.2014.10.115
 
63. Duan X., Li X., Ding F. Zhao J., Guo A., Zhang L., Yao J., Yang Y. 2015. Interaction of nitric oxide and reactive oxygen species and associated regulation of root growth in wheat seedlings under zinc stress. Ecotoxicol. Environ. Saf. 113 : 95-102.
https://doi.org/10.1016/j.ecoenv.2014.11.030
 
64. Durner J., Wendehemme D., Klessig D.F. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA. 95 : 10328-10333.
https://doi.org/10.1073/pnas.95.17.10328
 
65. Fan J., Chen K., Amombo E., Hu Z., Chen L., Fu J. 2015. Physiological and molecular mechanism of nitric oxide (NO) involved in bermudagrass response to cold stress. PLoS ONE. e0132991.doi:10.1371/journal.pone.0132991.
https://doi.org/10.1371/journal.pone.0132991
 
66. Fancy N.N., Bahlmann A.K., Loake G.J. 2017. Nitric oxide function in plant abiotic stress. Plant Cell Environ. 40 (4) : 462-472.
https://doi.org/10.1111/pce.12707
 
67. Fancy N.N., Bahlmann A.K., Loake G.J. 2017. Nitric oxide function in plant abiotic stress. Plant Cell Environ. 40 : 462-472.
https://doi.org/10.1111/pce.12707
 
68. Fant K. 2006. Alfred Nobel: a biography. N.Y.: Arcade Publishing. 344 p.
 
69. Farnese F.S., Menezes-Silva P.E., Gusman G.S., Oliveira J.A. 2016. When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front. Plant Sci. 7 : 471.
https://doi.org/10.3389/fpls.2016.00471
 
70. Farooq M., Basra M.A., Wahid A., Rehman H. 2009. Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J. Agronomy Crop Sci. 195 : 254-261.
https://doi.org/10.1111/j.1439-037X.2009.00367.x
 
71. Feelisch M., Noack E.A. 1987. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Europ. J. Pharmacol. 139 : 19-30.
https://doi.org/10.1016/0014-2999(87)90493-6
 
72. Floryszak-Wieczorek J., Milczarek G., Arasimowicz M., Ciszewski A. 2006. Do nitric oxide donors mimic endogenous NO-related response in plants?. Planta. 224 : 1363-1372.
https://doi.org/10.1007/s00425-006-0321-1
 
73. Friederich J.A., Butterworth J.F. 1995. Sodium nitroprusside: twenty years and counting. Anesthesia & Analgesia. 81 (1) : 152-162.
https://doi.org/10.1097/00000539-199507000-00031
 
74. Galatro A., Puntarulo S. 2014. An update to the understanding of nitric oxide metabolism in plants. Nitric Oxide in Plants: Metabolism and Role in Stress Physiology. Springer International Publishing. 3-15.
https://doi.org/10.1007/978-3-319-06710-0_1
 
75. Grossi L., D'Angelo S. 2005. Sodium nitroprusside: mechanism of NO release mediated by sulfhydryl-containing molecules. J. Med. Chem. 48 (7) : 2622-2626.
https://doi.org/10.1021/jm049857n
 
76. Hasanuzzaman M., Gill S.S., Fujita M. 2013. Physiological role of nitric oxide in plants grown under adverse environmental conditions. Plant Acclimation to Environmental Stress / Eds. N. Tuteja, S.S. Gill. New York: Springer Science+Business Media. : 269-322.
https://doi.org/10.1007/978-1-4614-5001-6_11
 
77. Hasanuzzaman M., Gill S.S., Fujita M. 2013. Physiological role of nitric oxide in plants grown under adverse environmental conditions. In: Plant Acclimation to Environmental Stress (eds. N.Tuteja and S.S.Gill). New York: Springer Science+Business Media. 269-322.
https://doi.org/10.1007/978-1-4614-5001-6_11
 
78. Hasanuzzaman M., Oku H.,•Nahar K., Bhuyan M.B., Al Mahmud J., Baluska F., Fujita M. 2018. Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotec. Rep. 12 (2) : 77-92. doi.org/10.1007/s11816-018-0480-0.
https://doi.org/10.1007/s11816-018-0480-0
 
79. Hasanuzzaman M., Oku H.,•Nahar K., Bhuyan M.B., Al Mahmud J., Baluska F., Fujita M. 2018. Nitric oxide‐induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnol. Rep. 12(2) : 77-92. doi:10.1007/s11816‐018‐0480‐0
https://doi.org/10.1007/s11816-018-0480-0
 
80. Hayat S., Yadav S., Wani A.S., Irfan M., Ahmad A. 2011. Nitric oxide effects on photosynthetic rate, growth, and antioxidant activity in tomato. Int. J. Vegetab. Sci. 17 : 333-348.
https://doi.org/10.1080/19315260.2011.563275
 
81. He J.M., Xu H., She X.P., Song X.G., Zhao W.M. 2005. The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Funct. Plant Biol. 32 : 237-247.
https://doi.org/10.1071/FP04185
 
82. Hottinger D.G., Beebe D.S., Kozhimannil T., Prielipp R.C., Belani K.G. 2014. Sodium nitroprusside in 2014: a clinical concepts review. Journal of Anaesthesiology, Clinical Pharmacology. 30 (4) : 462-471.
https://doi.org/10.4103/0970-9185.142799
 
83. Hou Y.C., Janczuk A. Wang, P.G. 1999. Current trends in the development of nitric oxide donors. Current pharmaceutical design. 5 (6) : 417-442.
 
84. Hsu Y.T., Kao C.H. 2004. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul. 42 : 227-238.
https://doi.org/10.1023/B:GROW.0000026514.98385.5c
 
85. Hu K.D., Hu L.Y., Li Y.H., Zhang F.Q., Zhang H. 2007. Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul. 53 : 173-183.
https://doi.org/10.1007/s10725-007-9216-9
 
86. Ignarro L.J. 2002. After 130 years, the molecular mechanism of action of nitroglycerin is revealed. Proc. Natl. Acad. Sci. USA. 99 : 7816-7817.
https://doi.org/10.1073/pnas.132271799
 
87. Ignarro L.J., ‎Freeman B. (eds). 2017. Nitric Oxide: Biology and Pathobiology (Third Edition). N.Y.: Elsevier, Academic Press. 434 p.
 
88. Jang I.C., Oh S.J, Seo J.S., Choi W.B., Song S.I., Kim C.H., Kim Y.S., Seo H.S., Choi Y.D., Nahm B.H., Kim J.K. 2003. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 131 : 516-524.
https://doi.org/10.1104/pp.007237
 
89. Kaur G., Singh H.P., Batish D.R., Mahajan P., Kohli R.K., Rishi V. 2015. Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) root. PLoS One 10(9) : e0138713. doi: 10.1371/journal.pone.0138713
https://doi.org/10.1371/journal.pone.0138713
 
90. Kausar F., Shahbaz M. 2013. Interactive effect of foliar application of nitric oxide (NO) and salinity on wheat (Triticum aestivum L.). Pakistan J. Bot. 45 : 67-73.
 
91. Kausar F., Shahbaz M., Ashraf M. 2013. Protective role of foliar-applied nitric oxide in Triticum aestivum under saline stress. Turk. J. Bot. 37 : 1155-1165.
https://doi.org/10.3906/bot-1301-17
 
92. Kazemi N., Khavari-Nejad R.A., Fahimi H., Saadatmand S., Nejad-Sattari T. 2010. Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci. Hort. 126 : 402-407.
https://doi.org/10.1016/j.scienta.2010.07.037
 
93. Khan M.N., Mobin M., Abbas Z.K., Siddiqui M.H. 2017. Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide. 68 : 91-102. doi: 10.1016/j.niox.2017.01.001.
https://doi.org/10.1016/j.niox.2017.01.001
 
94. Khan M.N., Mobin M., Mohammad F., Corpas F.J. (eds.). 2014. Nitric oxide in plants: metabolism and role in stress physiology. Heidelberg: Springer. 302 p.
https://doi.org/10.1007/978-3-319-06710-0
 
95. Kolupaev Yu.E., Karpets Yu.V., Beschasniy S.P., Dmitriev A.P. 2019. Gasotransmitters and their role in adaptive reactions of plant cells. Cytol.Genet. 53 (5) : 392-406.
https://doi.org/10.3103/S0095452719050098
 
96. Kolupaev Yu. E., Karpets Yu.V., Dmitriev A.P. 2015. Signal mediators in plants in response to abiotic stress: Calcium, reactive oxygen and nitrogen species. Cytol. Genet. 49 (5) : 338-348.
https://doi.org/10.3103/S0095452715050047
 
97. Kolupaev Yu.E., Karpets Yu.V., Yastreb Т.О. 2019. Induction of wheat plants resistance to stressors by donors of nitric oxide and hydrogen sulfide. In: Wheat Production in Changing Environments (Eds. M. Hasanuzzaman et al.). Springer Nature Singapore Pte Ltd. 521-556.
https://doi.org/10.1007/978-981-13-6883-7_21
 
98. Koshland D.E. 1992. Molecule of the Year (editorial). Science. 258 : 1861.
https://doi.org/10.1126/science.1470903
 
99. Krasylenko Y.A., Yemets A.I., Sheremet Y.A., Blume Ya.B. 2012. Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules in Arabidopsis. Physiol. Plant. 145. : 505-515.
https://doi.org/10.1111/j.1399-3054.2011.01530.x
 
100. Lancaster J.R. 1996. Diffusion of free nitric oxide. Methods in enzymology. 268 : 31-50.
https://doi.org/10.1016/S0076-6879(96)68007-0
 
101. Lancaster J.R. 1997. A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide. 1 (1) : 18-30.
https://doi.org/10.1006/niox.1996.0112
 
102. Laskin J.D., Heck D.E., Gardner C.R., Laskin D.L. 2001. Prooxidant and antioxidant functions of nitric oxide in liver toxicity. Antioxidants and Redox Signaling. 3 (2) : 261-271.
https://doi.org/10.1089/152308601300185214
 
103. Laspina N.V., Groppa M.D., Tomaro M.L., Benavides M.P. 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci. 169 : 323-330.
https://doi.org/10.1016/j.plantsci.2005.02.007
 
104. Leeuwenkamp O.R., van Bennekom W.P., van der Mark E.J., Bult A. 1984. Nitroprusside, antihypertensive drug and analytical reagent. Pharmaceutisch Weekblad. 6 (4) : 129-140.
https://doi.org/10.1007/BF01954040
 
105. Lian X., Lei Y. 2006. Nitric oxide treatment alleviates drought stress in wheat seedlings. Biol. Plant. 50 : 775-778.
https://doi.org/10.1007/s10535-006-0129-7
 
106. Lin Y., Liu Z., Shi Q., Wang X., Wei M., Yang F. 2012. Exogenous nitric oxide (NO) increased antioxidant capacity of cucumber hypocotyl and radicle under salt stress. Sci. Hort. 142 : 118-127.
https://doi.org/10.1016/j.scienta.2012.04.032
 
107. Lozano-Juste J., Leon J. 2010. Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol. 152 : 891-903.
https://doi.org/10.1104/pp.109.148023
 
108. Lozano-Juste J., Leon J. 2011. Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol. 156 : 1410-1423.
https://doi.org/10.1104/pp.111.177741
 
109. Mako K., Ureche C., Jeremias Z. 2018. An updated review of hypertensive emergencies and urgencies. J. Cardiovascular Emergencies. 4 (2) : 73-83.
https://doi.org/10.2478/jce-2018-0013
 
110. Mamaeva A.S., Fomenkov A.A., Nosov A.V., Moshkov I.E., Novikova G.V., Mur L.A.J., Hall M.A. 2015. Regulatory role of nitric oxide in plants. Russ. J. Plant Physiol. 62 : 427-440.
https://doi.org/10.1134/S1021443715040135
 
111. Manai J., Kalai T., Gouia H., Corpas F.J. 2014. Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants. J. Soil Sci. Plant Nutr. 14 (2) : 433-446.
https://doi.org/10.4067/S0718-95162014005000034
 
112. Marsh N., Marsh A. 2000. A short history of nitroglycerine and nitric oxide in pharmacology and physiology. Clin. Exp. Pharmacol. Physiol. 27 : 313-319.
https://doi.org/10.1046/j.1440-1681.2000.03240.x
 
113. Miller M.R., Megson I.L. 2007. Recent developments in nitric oxide donor drugs. Brit. J. Pharmacol. 151 (3) : 305-321.
https://doi.org/10.1038/sj.bjp.0707224
 
114. Mingos D.M.P. 2014. Historical introduction to nitrosyl complexes. Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine. Berlin-Heidelberg: Springer. 1-44.
https://doi.org/10.1007/430_2013_116
 
115. Mobin M., Khan M.N., Abbas Z.K. 2015. Nitric oxide impact on plant adaptation to transition metal stress. In Nitric Oxide Action in Abiotic Stress Responses in Plants, (eds. M.N. Khan et al.), Springer International Publishing Switzerland. 155-167.
https://doi.org/10.1007/978-3-319-17804-2_10
 
116. Moncada S., Higgs A. 1993. The L-arginine-nitric oxide pathway. New Engl. J. Med. 329 (27) : 2002-2012.
https://doi.org/10.1056/NEJM199312303292706
 
117. Montilla-Bascón G., Rubiales D., Hebelstrup K.H., Mandon J., Harren F.J.M., Cristescu S.M., Mur L.A.J., Prats E. 2017. Reduced nitric oxide levels during drought stress promote drought tolerance in barley and is associated with elevated polyamine biosynthesis. Scientific Rep. 7 : 13311. doi: 10.1038/s41598‐017‐13458‐
https://doi.org/10.1038/s41598-017-13458-1
 
118. Mostofa M.G., Fujita M., Tran L.S.P. 2015. Nitric oxide mediates hydrogen peroxide- and salicylic acidinduced salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regul. 77 : 265-277.
https://doi.org/10.1007/s10725-015-0061-y
 
119. Mur L.A.J., Mandon J., Persijn S., Cristescu S.M., Moshkov I.E., Novikova G.V., Hall M.A., Harren F.J.M., Hebelstrup K.H., Gupta K.J. 2013. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants. 5 : Pls052.
https://doi.org/10.1093/aobpla/pls052
 
120. Mur L.A.J., Santosa I.E., Laarhoven L.J., Harren J.F., Smith A.R. 2003. A new partner in the danse Macabre: The role of nitric oxide in the hypersensitive response. Bulg. J. Plant Physiol. Spec. Issue. : 110-123.
 
121. Murgia I., Delledonne M., Soave C. 2002. Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant J. 30 : 521-528.
https://doi.org/10.1046/j.1365-313X.2002.01312.x
 
122. Napoli C., Ignarro L.J. 2003. Nitric oxide-releasing drugs. Annu. Rev. Pharmacol. Toxicol. 43 (1) : 97-123.
https://doi.org/10.1146/annurev.pharmtox.43.100901.140226
 
123. Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P., Ribeiro D., Wilson I. 2008. Nitric oxide, stomatal closure and abiotic stress. J. Exp. Bot. 59 : 165-176.
https://doi.org/10.1093/jxb/erm293
 
124. Neill S.J., Desikan R., Clarke A., Hurst R.D., Hancock J.T. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot. 53 : 1237-1247.
https://doi.org/10.1093/jxb/53.372.1237
 
125. Neill S.J., Desikan R., Clarke A., Hurst R.D., Hancock J.T. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot. 53 : 1237-1247.
https://doi.org/10.1093/jxb/53.372.1237
 
126. Niu L., Liao W. 2016. Hydrogen peroxide signalingin plant development and abiotic responses: Crosstalk with nitric oxide and calcium. Front. Plant Sci. 7 : 230.
https://doi.org/10.3389/fpls.2016.00230
 
127. Oliveira C., Benfeito S., Fernandes C., Cagide F., Silva T., Borges F. 2018. NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Medicin. Res. Rev. 38 (4) : 1159-1187.
https://doi.org/10.1002/med.21461
 
128. Oz M.T., Eyidogan F., Yucel M., Oktem H.A. 2015. Functional role of nitric oxide under abiotic stress conditions. In Nitric oxide action in abiotic stress responses in plants / Eds. Khan M.N., Mobin M., Mohammad F., Corpas F.J. Heidelberg; New York; Dordrecht; London. 21-42.
https://doi.org/10.1007/978-3-319-17804-2_2
 
129. Pacher P., Beckman J.S., Liaudet L. 2007. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 87 (1) : 315-424.
https://doi.org/10.1152/physrev.00029.2006
 
130. Palmer R.F., Lasseter K.C. 1975. Sodium nitroprusside. New Engl. J. Med. 292 (6) : 294-297.
https://doi.org/10.1056/NEJM197502062920606
 
131. Procházková D., Haisel D., Wilhelmová N., Pavlíková D., Száková J. 2013. Effects of exogenous nitric oxide on photosynthesis. Photosynthetica, 51 : 483-489.
https://doi.org/10.1007/s11099-013-0053-y
 
132. Prouhdon D., Wei J., Theil E.C. 1996. Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints. J. Mol. Evol. 42 : 325-336.
https://doi.org/10.1007/PL00006060
 
133. Romero N., Denicola A., Radi R. 2006.Red blood cells in the metabolism of nitric oxide-derived peroxynitrite. IUBMB Life. 58 : 572-580.
https://doi.org/10.1080/15216540600936549
 
134. Romero-Puertas M.C., Corpas F.J., Sandalio L.M., Leterrier M., Rodríguez‐Serrano M., Del Río L.A., Palma J.M. 2006. Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol. 170 : 432-452.
https://doi.org/10.1111/j.1469-8137.2005.01643.x
 
135. Roszer T. 2012. The biology of subcellular nitric oxide. Netherlands, Springer Science & Business Media. 210 p.
https://doi.org/10.1007/978-94-007-2819-6
 
136. Sami F., Faizan M., Faraz A., Siddiqui H., Yusuf M., Hayat S. 2018. Nitric oxidemediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide. 73 : 22-38. doi: 10.1016/j.niox.2017.12.005.
https://doi.org/10.1016/j.niox.2017.12.005
 
137. Sánchez-Romera B., Porcel R., Ruiz-Lozano J.M., Aroca R. 2018. Arbuscular mycorrhizal symbiosis modifies the effects of a nitric oxide donor (sodium nitroprusside; SNP) and a nitric oxide synthesis inhibitor (Nω-nitro-L-arginine methyl ester; L-NAME) on lettuce plants under well watered and drought conditions. Symbiosis, 74 (1) : 11-20.
https://doi.org/10.1007/s13199-017-0486-3
 
138. Santisree P., Bhatnagar-Mathur P., Sharma K.K. 2015. NO to drought-multifunctional role of nitric oxide in plant drought: Do we have all the answers? Plant Sci. 239 : 44-55.
https://doi.org/10.1016/j.plantsci.2015.07.012
 
139. Sanz L., Albertos P., Mateos I., Sánchez-Vicente I., Lechón T., Fernández-Marcos M., Lorenzo O. 2015. Nitric oxide (NO) and phytohormones crosstalk during early plant development. J. Exp. Bot. 66 (10): 2857-2868.
https://doi.org/10.1093/jxb/erv213
 
140. Seabra A.B., Rai M., Duran N. 2014. Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: a mini review. J. Plant Biochem. Biotechnol. 23(1) : 1-10.
https://doi.org/10.1007/s13562-013-0204-z
 
141. Shan C., Zhou Y., Liu M. 2015. Nitric oxide participates in the regulation of the ascorbate‐glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress. Protoplasma. 252 : 1397-1405.
https://doi.org/10.1007/s00709-015-0756-y
 
142. Sidana S., Bose J., Shabala L., Shabala S. 2015. Nitric oxide in drought stress signalling and tolerance in plants. In Nitric oxide action in abiotic stress responses in plants / Eds. M.N. Khan et al. Heidelberg, New York, Dordrecht, London: Springer. 95-114.
https://doi.org/10.1007/978-3-319-17804-2_6
 
143. Sidana S., Bose J., Shabala L., Shabala S. 2015. Nitric oxide in drought stress signalling and tolerance in plants. In Nitric Oxide Action in Abiotic Stress Responses in Plants (eds. M.N. Khan et al.), Springer International Publishing Switzerland. 95-114.
https://doi.org/10.1007/978-3-319-17804-2_6
 
144. Siddiqui M.H., Alamri S.A., Mutahhar Y.Y., Al-Khaishany M.A., Al-Qutami H.M., Nasir Khan M.A. 2017. Nitric oxide and calcium induced physiobiochemical changes in tomato (Solanum lycopersicum) plant under heat stress. Fresen. Environ. Bull. 26 (2a) : 1663-1672.
 
145. Singh H.P., Batish D.R. Kaur G., Arora K., Kohli R.K. 2008. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ. Exp. Bot. 63 : 158-167.
https://doi.org/10.1016/j.envexpbot.2007.12.005
 
146. Singh P., Shah K. 2017. An update on effects of nitric oxide under abiotic stresses in higher plants. Adv. Plant Physiol. 15 : 283-306.
 
147. Singh R.J., Hogg N., Neese F., Joseph J., Kalyanaraman B. 1995. Trapping of nitric oxide formed during photolysis of sodium nitroprusside in aqueous and lipid phases: an electron spin resonance study. Photochem. Photobiol. 61 (4) : 325-330.
https://doi.org/10.1111/j.1751-1097.1995.tb08616.x
 
148. Song L., Ding W., Zhao M., Sun B., Zhang L. 2006. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci. 171 : 449-458.
https://doi.org/10.1016/j.plantsci.2006.05.002
 
149. Srivastava S., Dubey R.S. 2012. Nitric oxide alleviates manganese toxicity by preventing oxidative stress in excised rice leaves. Acta Physiol. Plant. 34 : 819-825.
https://doi.org/10.1007/s11738-011-0863-0
 
150. Stohr C., Ullrich W.R. 2002. Generation and possible roles of NO in plant roots and their apoplastic space. J. Exp. Bot. 53 (379) : 2293-2303.
https://doi.org/10.1093/jxb/erf110
 
151. Szabo C., Ohshima H. 1997. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric oxide. 1 (5) : 373-385.
https://doi.org/10.1006/niox.1997.0143
 
152. Tan J., Zhao H., Hong J., Han Y., Li H., Zhao W. 2008. Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress. World J. Agricult. Sci. 4 : 307-313.
 
153. Tewari R.K., Hahn E.J., Paek K.Y. 2008. Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in Panax ginseng. Plant Cell Rep. 27 : 563-573.
https://doi.org/10.1007/s00299-007-0448-y
 
154. Tfelt-Hansen P.C., Tfelt-Hansen J. 2009. Nitroglycerin headache and nitroglycerin-induced primary headaches from 1846 and onwards: a historical overview and an update. Headache. 49 (3) : 445-456.
https://doi.org/10.1111/j.1526-4610.2009.01342.x
 
155. Tian X., He M., Wang Z., Zhang J., Song Y., He Z., Dong Y. 2015. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regul. 77 (3) : 343-356.
https://doi.org/10.1007/s10725-015-0069-3
 
156. Tinker J.H., Michenfelder J.D. 1976. Sodium nitroprusside: pharmacology, toxicology and therapeutics. Anesthesiology. 45 (3) : 340-354.
https://doi.org/10.1097/00000542-197609000-00016
 
157. Uchida A., Jagendorf A.T., Hibino T., Takabe T., Takabe T. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 163 : 515-523.
https://doi.org/10.1016/S0168-9452(02)00159-0
 
158. Vanin A.F. 1998. Biological role of nitric oxide: history, modern state, and perspectives for research. Biochemistry-New York-English Translation of Biokhimiya. 63 (7) : 731-733.
 
159. Wang P.G., Xian M., Tang X., Wu X., Wen Z., Cai T., Janczuk A.J. 2002. Nitric oxide donors: chemical activities and biological applications. Chem. Rev. 102 (4) : 1091-1134.
https://doi.org/10.1021/cr000040l
 
160. Wang Y., Luo Z., Khan Z.U., Mao L., Ying T. 2015. Effect of nitric oxide on energy metabolism in postharvest banana fruit in response to chilling stress. Postharvest Biol. Technol. 108 : 21-27.
https://doi.org/10.1016/j.postharvbio.2015.05.007
 
161. Wilson I.D., Neill S.J., Hancock J.T. 2008. Nitric oxide synthesis and signaling in plants. Plant Cell Environ. 31 : 622-631.
https://doi.org/10.1111/j.1365-3040.2007.01761.x
 
162. Xing H., Tan L., An L. Zhao Z., Wang S., Zhang C. 2004. Evidence for the involvement of nitric oxide and reactive oxygen species in osmotic stress tolerance of wheat seedlings: inverse correlation between leaf abscisic acid accumulation and leaf water loss. Plant Growth Regul. 42 : 61-68.
https://doi.org/10.1023/B:GROW.0000014894.48683.1b
 
163. Yastreb Т.О., Kolupaev Yu.Е., Kokorev А.I., Horielova E.I., Dmitriev A.P. 2018. Methyl jasmonate and nitric oxide in regulation of stomatal apparatus of Arabidopsis thaliana. Cytol. Genet. 52 (6) : 400-405.
https://doi.org/10.3103/S0095452718060129
 
164. Yemets A.I., Karpets Yu.V., Kolupaev Yu.E., Blume Yu.B. 2019. Emerging technologies for enhancing ROS/RNS homeostasis. In Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms (Eds: Hasanuzzaman M. et al.) John Wiley & Sons Ltd. 873-922.
https://doi.org/10.1002/9781119468677.ch39
 
165. Yemets A.I., Krasylenko Yu.A., Sheremet Ya.A., Blume Ya.B. Microtubule reorganization as a response to implementation of NO signals in plant cells. Cytol. Genet. 43 (2) : 73-79.
https://doi.org/10.3103/S0095452709020017
 
166. Yetik-Anacak G., Catravas J.D. 2006. Nitric oxide and the endothelium: history and impact on cardiovascular disease. Vascular Pharmacol. 45 (5) : 268-276.
https://doi.org/10.1016/j.vph.2006.08.002
 
167. Yuan S., Liu W.J., Zhang N.H., Wang M.B., Liang H.G., Hui Lin H. 2005. Effects of water stress on major photosystem II gene expression and protein metabolism in barley leaves. Physiol. Plant. 125 (4) : 464-473.
https://doi.org/10.1111/j.1399-3054.2005.00577.x
 
168. Zhang Y., Wang L., Liu Y., Zhang Q., Wei Q., Zhang W. 2006. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta. 224 : 545-555.
https://doi.org/10.1007/s00425-006-0242-z
 
169. Zhao M.G., Chen L., Zhang L.L., Zhang W.H. 2009. Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol. 151 : 755-767.
https://doi.org/10.1104/pp.109.140996
 
170. Zhao M.G., Chen L., Zhang L.L., Zhang W.H. 2009. Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol. 151 : 755-767.
https://doi.org/10.1104/pp.109.140996