Visn. Hark. nac. agrar. univ., Ser. Biol., 2019, Issue 2 (47), pp. 23-38


https://doi.org/10.35550/vbio2019.02.023




PARTICIPATION OF IONS OF SILICON IN ADAPTATION OF PLANTS TO ADVERSE FACTORS


O. M. Nedukha

Kholodny Institute of Botany
of National Academy of Sciences of Ukraine
(Kyiv, Ukraine)

Silicon is one of the most common chemical elements of the Earth's crust, which accumulates in the plant, plays a positive role in its growth and development under normal conditions, as well as under the influence of unfavorable environment. Literature data on transport, localization, and role of silicon in growth and development of agricultural crops and wild species, obtained by cytological, physiological, and molecular methods, are presented. It is shown that silicon in plant cells can be in three forms: soluble, associated with high-molecular organic compounds, or in pure amorphous or crystalline form. Silicon ions can bind to proteins, amino acids, polysaccharides, polyphenols, lipids and other substances. The role of silicon in mechanisms of plant resistance and plasticity to the action of many abiotic and biotic factors was shown. It has been established that plant growth under conditions of drought and soil salinity leads to active absorption of silicon from soil by roots and an increase in its content in leaves. This helps to reduce transpiration, maintain optimal water balance in plant, enhance photosynthesis, and activate the synthesis of stress proteins under adverse conditions. Silicon also leads to increased expression of genes of enzymes involved in synthesis of osmotically active substances and various secondary metabolites with protective properties. Of particular importance for resistance of plants is the participation of silicon in processes of strengthening cell walls. Polymerization of silicic acid in apoplast leads to the formation of an amorphous silicon barrier, which prevents penetration of toxic heavy metal ions and aluminum. It is emphasized the need for greater attention to the study of this element’s role in adaptation of plants to adverse anthropogenic and climatic influences.


Key words: silicon, tolerance and plasticity of plant, drought, salinization, biotic stress

 


REFERENCES



1. Belyavskaya N.A., Fedyuk O.M., Zoltareva E.K. Plants and heavy metals: perception and signaling. Bull. Kharkiv Natl. Agrar. Univ. Ser. Biology. (Visn. Hark. nac. agrar. univ., Ser. Biol.). 3 (45) : 10-30.
 
2. Voronkov M.G., Zelchan G.I., Lukevitz E.Ya. 1978. Riga : Zinatne : 587 p.
 
3. Kemecheva M.Kh. 2003. The Role of Silicon Fertilizers in Increasing Rice Productivity on Meadow Soils on the Left Bank of the r. Kuban: Thesis … Cand. Agricult. Sci. Maykop : 132 p..
 
4. Kolesnikov M.P. 2001. Silicon forms in plants. Successes of Biological Chemistry. 41 : 301-332.
 
5. Kolupaev Yu.E., Karpets Yu.V. 2010. Formation of plants adaptive reactions to abiotic stressors influence. Kyiv : Osnova : 352 p.
 
6. Kolupaev Yu. Е. 2001. Stress Reactions of Plants: Molecular-Cellular Level. Kharkiv : 171 p.
 
7. Kosakovskaya I.V. 2003. Physiological and biochemical bases of adaptation of plants to stress. Kyiv : Steel : 192 p.
 
8. Matichenkov V.V. 2008. The role of mobile silicon compounds in plants and the soil-plant system. Thesis … Doctor Agricult. Sci. Pushchino.
 
9. Ahmad R., Zaheer S. H., Ismail S. 1992. Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci. 85 : 43-50. doi: org/10.1016/0168-9452(92)90092-Z
https://doi.org/10.1016/0168-9452(92)90092-Z
 
10. Ahmed M., Fayyaz U.H., Qadeer U., Aslam M.A. 2011. Silicon application and drought tolerance mechanism of sorghum. Afr. J. Agr. Res. 6 : 594-607. doi: 10.5897/AJAR10.626
 
11. Ahmed M., Qadeer U., Ahmed Z. I., Fayyaz-Ul H. 2016. Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Arch. Agron. Soil Sci. 62 : 299-315. doi: org/10.1080/03650340.2015.1048235
https://doi.org/10.1080/03650340.2015.1048235
 
12. Brenchley W.E., Maskell E.J., Katherine W. 2008. The inter-relation between silicon and other elements in plant nutrition. Ann. Appl. Biol. 14 : 45-82. doi: 10.1111/j.1744-7348.1927.tb07005.x
https://doi.org/10.1111/j.1744-7348.1927.tb07005.x
 
13. Breyton C., de Vitry C., Popot J. L. 1994. Membrane association of cytochrome b6f subunits. The Rieske iron-sulfur protein from Chlamydomonas reinhardtii is an extrinsic protein. J. Biol. Chem. 269 : 7597-7602.
 
14. Burnet M., Lafontaine P.J., Hanson A.D. 1995. Assay, purification, and partial characterization of choline monooxygenase from spinach. Plant Physiol. 108 : 581-588.
https://doi.org/10.1104/pp.108.2.581
 
15. Chen J.Q., Meng X.P., Zhang Y., Xia M., Wang X.P. 2008. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol. Lett. 30: 2191-2198. doi: 10.1007/s10529-008-9811-5
https://doi.org/10.1007/s10529-008-9811-5
 
16. Cherif M., Asselin A., Belanger R. R. 1994. Defence responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology. 84 : 236-242. doi: 10.1094/Phyto-84-236.
https://doi.org/10.1094/Phyto-84-236
 
17. da Cunha K.P.V., do Nascimento C.W.A., da Silva A.J. 2008. Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on a contaminated soil. J. Plant Nutr. Soil Sci. 171 : 849-853. doi: org/10.1002/jpln.200800147
https://doi.org/10.1002/jpln.200800147
 
18. Datno L.E., Snyder G.H., Korndörfer G.H. 2001. Silicon in Agriculture. Amsterdam: Elsevier.
 
19. Epstein E. 1999. Silicon. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50 : 641-664.
https://doi.org/10.1146/annurev.arplant.50.1.641
 
20. Epstein E. 2009. Silicon : its manifold roles in plants. Ann. Appl. Biol. 155 : 155-160. doi: org/10.1111/j.1744-7348.2009.00343.x
https://doi.org/10.1111/j.1744-7348.2009.00343.x
 
21. Exley C. 2009. Silicon in life: whither biological silicification? In: Biosilica in Evolution, Morphogenesis, and Nano-biotechnology. Eds. Mueller W.E.G., Grachev M.A. Berlin : Springer : 173-184. doi: org/10.1007/978-3-540-88552-8_7
https://doi.org/10.1007/978-3-540-88552-8_7
 
22. Farmer V., Delbos E., Miller J. D. 2005. The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma. 127 : 71-79. doi: org/10.1016/j.geoderma.2004.11.014
https://doi.org/10.1016/j.geoderma.2004.11.014
 
23. Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29 : 185-212. doi: org/10.1051/agro:2008021
https://doi.org/10.1051/agro:2008021
 
24. Fauteux F., Remus-Borel W., Menzies J.B., Belanger R.R. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett. 249 : 1-6. doi: 10.1016/j.femsle.2005.06.034
https://doi.org/10.1016/j.femsle.2005.06.034
 
25. Fleck A. T., Nye T., Repenning C., Stahl F., Zahn M., Schenk M. K. 2011. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J. Exp. Bot. 62 : 2001-2011. doi: 10.1093/jxb/erq392
https://doi.org/10.1093/jxb/erq392
 
26. Fleck A.T., Schulze S., Hinrichs M., Specht A., Wassmann F., Schreiber L. 2015. Silicon promotes exodermal Casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes. PLoS ONE. 10:e0138555 10.1371. doi: 10.1371/journal.pone.0138555
https://doi.org/10.1371/journal.pone.0138555
 
27. Gao J.P., Chao D.Y., Lin H.X. 2007. Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J. Integr. Plant Biol. 49 : 742-750. doi: org/10.1111/j.1744-7909.2007.00495.x
https://doi.org/10.1111/j.1744-7909.2007.00495.x
 
28. Gill S. S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930. doi: 10.1016/j.plaphy.2010.08.016
https://doi.org/10.1016/j.plaphy.2010.08.016
 
29. Gong H.J., Zhu X.Y., Chen K.M., Wang S.M., Zhang C.L. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 169 : 313-321. doi: org/10.1016/j.plantsci.2005.02.023
https://doi.org/10.1016/j.plantsci.2005.02.023
 
30. Guerriero G., Hausman J.F., Legay S. 2016. Silicon and the plant extracellular matrix. Front. Plant Sci. 7 : 463. doi: 10.3389/fpls.2016.00463
https://doi.org/10.3389/fpls.2016.00463
 
31. Hamam A., Britto D., Flam-Shepherd R., Kronzucker H. 2016. Measurement of differntial Na+-efflux from apical and bulk root zones of intact barley and Arabidopsis plants. Front Plant Sci. 7 : 272. doi: 10.3389/fpls.2016.00272
https://doi.org/10.3389/fpls.2016.00272
 
32. Hattori T., Sonobe K., Araki H., Inanaga S., An P., Morita S. 2008. Silicon application by sorghum through the alleviation of stress-induced increase in hydraulic resistance. J. Plant Nutr. 31 : 1482-1495. doi: org/10.1080/01904160802208477
https://doi.org/10.1080/01904160802208477
 
33. He C., Ma J., Wang L. 2015. A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytol. 206 : 1051-1062. doi: 10.1111/nph.13282
https://doi.org/10.1111/nph.13282
 
34. Hodson M. J., White P. J., Mead A., Broadley M. R. 2005. Phylogenetic variation in the silicon composition of plants. Ann. Bot. 96 : 1027-1046. doi: 10.1093/aob/mci255
https://doi.org/10.1093/aob/mci255
 
35. Hundertmark M., Hincha D.K. 2008. LEA (late embry-ogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 9 : 118-128. doi: 10.1186/1471-2164-9-118
https://doi.org/10.1186/1471-2164-9-118
 
36. Kawakami K., Iwai M., Ikeuchi M., Kamiya N., Shen J.R. 2007. Location of PsbY in oxygen-evolving photosystem II revealed by mutagenesis and X-ray crystallography. FEBS Lett. 581 : 4983-4987. doi: 10.1016/j.febslet.2007.09.036
https://doi.org/10.1016/j.febslet.2007.09.036
 
37. Khattab H.I., Emam M.A., Emam M.M., Helal N.M., Mohamed M.R. 2014. Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biol. Plant. 58 : 265-273. doi: org/10.1007/s10535-014-0391-z
https://doi.org/10.1007/s10535-014-0391-z
 
38. Kerstein G. 2006. Cutiular water permeability and its physiological significance. J. Exp. Bot. 47 : 1813-1832. doi: org/10.1093/jxb/47.12.1813
https://doi.org/10.1093/jxb/47.12.1813
 
39. Knight C. T. G., Kinrade S. D. 2001. A primer on the aqueous chemistry of silicon. In: Silicon in Agriculture. Eds. Datno L.E. et al. Amsterdam: Elsevier Science : 57-84.
https://doi.org/10.1016/S0928-3420(01)80008-2
 
40. Kovda V.A. 1973. The Bases of Learning About Soils. Moscow : Nayka.
 
41. Kusano T., Berberich T., Tateda C., Takahashi Y. 2008. Polyamines: essential factors for growth and survival. Planta. 228 : 367-381. doi: 10.1007/s00425-008-0772-7
https://doi.org/10.1007/s00425-008-0772-7
 
42. Lenka S.K., Katiyar A., Chinnusamy V., Bansal K.C. 2011. Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol. J. 9 : 315-327. doi: 10.1111/j.1467-7652.2010.00560.x
https://doi.org/10.1111/j.1467-7652.2010.00560.x
 
43. Latef A.A.A., Tran L.S.P. 2016. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front. Plant Sci. 7 : 243. doi: 10.3389/fpls.2016.00243
https://doi.org/10.3389/fpls.2016.00243
 
44. Li Y.C., Summer M.E., Miller W.P., Alva A K. 1996. Mechanism of silicon induced alleviation of aluminum phytotoxicity. J. Plant Nutr. 19 : 1075-1087.
https://doi.org/10.1080/01904169609365181
 
45. Liang Y.C., Sun W.C., Zhu Y.G., Christie P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut. 147 : 422-428. doi: 10.1016/j.envpol.2006.06.008
https://doi.org/10.1016/j.envpol.2006.06.008
 
46. Liang Y. C., Wong J.W.C., Wei L. 2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere. 58 : 475-483. doi: 10.1016/j.chemosphere.2004.09.034
https://doi.org/10.1016/j.chemosphere.2004.09.034
 
47. Liang Y., Zhang W., Chen Q., Liu Y., Ding R. 2006. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ. Exp. Bot. 57 : 212-219. doi: org/10.1016/j.envexpbot.2005.05.012
https://doi.org/10.1016/j.envexpbot.2005.05.012
 
48. Ling H., Zeng X., Guo S. 2016. Functional insight into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidacea) using an Escherichi coli system. Sci. Rep. 6 : 39693. doi: 10.1038/srep39693
https://doi.org/10.1038/srep39693
 
49. Lins U., Barros C. F., da Cunha M., Miguens F.C. 2002. Structure, morphology and composition of silicon biocomposites in the palm tree Syagrus coronate (Mart.) Becc. Protoplasma. 220. 89-96. doi: 10.1007/s00709-002-0036-5
https://doi.org/10.1007/s00709-002-0036-5
 
50. Liu P., Yin L., Deng X., Wang S., Tanaka K., Zhang S. 2014. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J. Exp. Bot. 65 : 4747-4756. doi: 10.1093/jxb/eru220
https://doi.org/10.1093/jxb/eru220
 
51. Lucas S., Durmaz E., Akpınar B. A., Budak H. 2011. The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiol. Biochem. 49 : 346-351. doi: 10.1016/j.plaphy.2011.01.016
https://doi.org/10.1016/j.plaphy.2011.01.016
 
52. Ma J.F., Takahashi E. 1993. Interaction between calcium and silicon in water-cultured rice plants. Plant Soil. 148 : 107-113. doi: org/10.1007/BF02185390
https://doi.org/10.1007/BF02185390
 
53. Ma J.F., Takahashi E. 2002. Soil, Fertilizer and Plant Silicon Research in Japan. Amsterdam : Elsevier Science.
https://doi.org/10.1016/B978-044451166-9/50009-9
 
54. Ma J.F., Tamai K., Yamaji N., Mitani N., Konishi S., Katsuhara M., Ishiguro M., Murata Y., Yano M. 2006. A silicon transporter in rice. Nature. 440 : 688-691. doi: 10.1038/nature04590
https://doi.org/10.1038/nature04590
 
55. Ma J.F., Yamaji N. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11 : 392-397. doi: 10.1016/j.tplants.2006.06.007
https://doi.org/10.1016/j.tplants.2006.06.007
 
56. Ma J.F., Yamaji N. 2015. A cooperative system of silicon transport in plants. Trends Plant Sci. 20 : 435-442. doi: 10.1016/j.tplants.2015.04.007
https://doi.org/10.1016/j.tplants.2015.04.007
 
57. Ma J.F., Yamaji N., Mitani N., Xu X., Su Y., McGrath S.P. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. U.S.A. 105 : 9931-9935. doi: 10.1073/pnas.0802361105
https://doi.org/10.1073/pnas.0802361105
 
58. Ma J.F., Yamaji N., Mitani-Ueno N. 2011. Transport of silicon from roots to panicles in plants. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 87 : 377-385.
https://doi.org/10.2183/pjab.87.377
 
59. Ma J.F., Yamaji N., Tamai K., Mitani N. 2007a. Genotypic di erence in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol. 145 : 919-924. doi: 10.1104/pp.107.107599
https://doi.org/10.1104/pp.107.107599
 
60. Ma J.F., Yamaji N., Mitani N., Tamai K., Konishi S., Fujiwara T. 2007b. An e ux transporter of silicon in rice. Nature. 448 : 209-212. DOI: 10.1038/nature05964
https://doi.org/10.1038/nature05964
 
61. Manivannan A., Ahn Yul-Kuyn. 2017. Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Front. Plant Sci. 8 : 1346. doi: 10.3389/fpls.2017.01346
https://doi.org/10.3389/fpls.2017.01346
 
62. Ming D.F., Pei Z. F., Naeem M. S., Gong H.J., Zho W.J. 2012. Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J. Agron. Crop Sci. 198 : 14-26. doi: org/10.1111/j.1439-037X.2011.00486
https://doi.org/10.1111/j.1439-037X.2011.00486.x
 
63. Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta. 1819 : 86-96. doi: 10.1016/j.bbagrm.2011.08.004
https://doi.org/10.1016/j.bbagrm.2011.08.004
 
64. Naeem A., Ghafoor A., Farooq M. 2014. Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars. J. Sci. Food Agric. 95 : 2467-2472. doi: 10.1002/jsfa.6976
https://doi.org/10.1002/jsfa.6976
 
65. Nakashima K., Ito Y., Yamaguchi-Shinozaki K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149 : 88-95. doi: 10.1104/pp.108.129791
https://doi.org/10.1104/pp.108.129791
 
66. Nedukha O.M. 2018. Leaf blade micromorphology and the silicon content in Phragmites australis (Poaceae) are correlated with water balance in the environment. J. Plant Physiol. Pathol. 6 (2) : 1-11. doi: 10.4172/2329-955X.1000177
https://doi.org/10.4172/2329-955X.1000177
 
67. Neumann D. 2003. Silicon in plants. In: Silicon Biomineralization. Eds. Müller W.E.G. Progress in Molecular and Subcellular Biology, vol 33. Springer, Berlin, Heidelberg : 149-160. doi.org/10.1007/978-3-642-55486-5_6
https://doi.org/10.1007/978-3-642-55486-5_6
 
68. Pandey S., Ranade S. A., Nagar P. K., Kumar N. 2000. Role of polyamines and ethylene as modulators of plant senescence. J. Biosci. 25 : 291-299.
https://doi.org/10.1007/BF02703938
 
69. Pei Z.F., Ming D.F., Liu D., Wan G.L., Geng X.X., Gong H.J. 2010. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivumL.) seedlings. J. Plant Growth Regul. 29 : 106-115. doi: org/10.1007/s00344-009-9120-9
https://doi.org/10.1007/s00344-009-9120-9
 
70. Raven J.A. 2001. Silicon transport at the cell and tissue level. In: Silicon in Agriculture. Eds. Datno L.E. et al. Amsterdam : Elsevier : 41-51. doi: org/10.1016/S0928-3420(01)80007-0
https://doi.org/10.1016/S0928-3420(01)80007-0
 
71. Raven J.A. 2003. Cycling silicon - the role of accumulation in plants. New Phytol. 158 : 419-421. doi: org/10.1046/j.1469-8137.2003.00778.x
https://doi.org/10.1046/j.1469-8137.2003.00778.x
 
72. Remus-Borel W., Menzier J.G., Belanger R.R. 2005. Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol. Mol. Plant Pathol. 66 : 108-115. doi: 10.1016/j.pmpp.2005.05.006
https://doi.org/10.1016/j.pmpp.2005.05.006
 
73. Rezanka T., Sigler K. 2008. Biologically active compounds of semi metals. Stud. Nat. Prod. Chem. 35 : 835-921. doi: org/10.1016/S1572-5995(08)80018-X
https://doi.org/10.1016/S1572-5995(08)80018-X
 
74. Rizwan M., Ali S., Ibrahim M., Farid M., Adrees M., Bharwana S.A. 2015. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ. Sci. Pollut. Res. 22 : 15416-15431. doi: org/10.1007/s11356-015-5305-x
https://doi.org/10.1007/s11356-015-5305-x
 
75. Rodrigues F.A., Benhamou N.,Datno L.E., Jones J.B., Belanger R. R. 2003. Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology. 93 : 535-546. doi: 10.1094/PHYTO.2003.93.5.535
https://doi.org/10.1094/PHYTO.2003.93.5.535
 
76. Rotat T. 2006. Plant dehydrins - tissue location, structure and function. Cell Mol Biol Lett. 11 : 536-556. doi: 10.2478/s11658-006-0044-0
https://doi.org/10.2478/s11658-006-0044-0
 
77. Roy M., Wu R. 2001. Arginine decarboxylase transgene expression and analysis of environmental stress tol-erance in transgenic rice. Plant Sci. 160 : 869-875. doi: 10.1016/S0168-9452(01)00337-5
https://doi.org/10.1016/S0168-9452(01)00337-5
 
78. Saqib M., Zoerb C., Schubert S. 2008. Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Funct. Plant Biol. 35 : 633-639. doi: org/10.1071/FP08100
https://doi.org/10.1071/FP08100
 
79. Sauer D., Saccone,L., Conley D. J., Hermann L., Sommer M. 2006. Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry. 80 : 89-108. doi.org/10.1007/s10533-005-5879-3
https://doi.org/10.1007/s10533-005-5879-3
 
80. Shi Y., Zhang Y., Han W., Feng R., Hu Y., Guo J. 2016. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Front. Plant Sci. 7: 196. doi: 10.3389/fpls.2016.
https://doi.org/10.3389/fpls.2016.00196
 
81. Schönher J. 2006. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J. Exp. Bot. 57 : 2471-2491. doi: 10.1093/jxb/erj217
https://doi.org/10.1093/jxb/erj217
 
82. Song Z., Zhao S., Zhang Y., Hu G., Cao Z., Wong M. 2011. Plant impact on CO2 consumption by silicate weathering: the role of bamboo. Bot. Rev. 77 : 208-213. doi: org/10.1007/s12229-011-9077-9
https://doi.org/10.1007/s12229-011-9077-9
 
83. Song A., Li P., Fan F., Li Z., Liang Y. 2014. The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE. 9: e113782. doi: 10.1371/journal.pone.0113782/
https://doi.org/10.1371/journal.pone.0113782
 
84. Sun S., Yu J.P., Chen F., Zhao T., Fang X., Li Y., Sui S. 2008. TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor - connectioing the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. J. Biol. Chem. 283 : 6261-6271. doi: 10.1074/jbc.M706800200
https://doi.org/10.1074/jbc.M706800200
 
85. Suzuki S., Ma J.F., Yamamoto N., Hattori T., Sakamo-to M., Umezawa T. 2012. Silicon deficiency promotes lignin accumulation in rice. Plant Biotechnol. 29 : 391-394. doi: org/10.5511/plantbiotechnology.12.0416a
https://doi.org/10.5511/plantbiotechnology.12.0416a
 
86. Tabor C.W., Tabor H. 1984. Polyamines. Ann. Rev. Bi-ochem. 53 : 749-790. doi: 10.1146/annurev.bi.53.070184.003533
https://doi.org/10.1146/annurev.bi.53.070184.003533
 
87. Takasaki H., Maruyama K., Kidokoro S., Ito Y., Fujita Y., Shinozaki K. 2010. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol. Genet. Genomics. 284 : 173-183. doi: 10.1007/s00438-010-0557-0
https://doi.org/10.1007/s00438-010-0557-0
 
88. Tang W., Newton R. J., Li C., Charles T. M. 2007. Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis. Plant Cell Rep. 26 : 115-124. doi: 10.1007/s00299-006-0228-0
https://doi.org/10.1007/s00299-006-0228-0
 
89. Wang Q., Guan Y., Wu Y., Chen H., Chen F., Chu C. 2008. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol. Biol. 67 : 589-602. doi: 10.1007/s11103-008-9340-6
https://doi.org/10.1007/s11103-008-9340-6
 
90. Wang L, Nie Q, Li M, Zhang F, Zhuang J, Yang W. 2005. Biosilicified structures for cooling plant leaves: a mechanism of highly efficient midinfrared thermal emission. Appl. Phys. Lett. 87 : 194105. doi: org/10.1063/1.2126115
https://doi.org/10.1063/1.2126115
 
91. Wang Y., Stass A., Horst W.J. 2004. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol. 136 : 3762-3770. doi: 10.1104/pp.104.045005
https://doi.org/10.1104/pp.104.045005
 
92. Watanabe S., Shimoi E., Ohkama N., Hayashi H., Yoneyama T., Yazaki J., Fujii F., Shinbo K., Yamamoto K., Sakata K., Sasaki T., Kishimoto N., Kikuchi S., Fujiwara T. 2004. Identification of several rice genes regulated by Si nutrition. Soil. Sci. Plant Nutrition. 50 : 1273-1276. doi: org/10.1080/00380768.2004.10408603
https://doi.org/10.1080/00380768.2004.10408603
 
93. Umezawa T., Fujita M., Fujita Y., Yamaguchi-Shinozaki K., Shinozaki K. 2006. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol. 17 : 113-122. doi: 10.1016/j.copbio.2006.02.002
https://doi.org/10.1016/j.copbio.2006.02.002
 
94. Yeo A. 1998. Predicting the interaction between the effects of salinity and climate change on crop plants. Sci. Hortic. 78 : 159-174. doi: org/10.1016/S0304-4238(98)00193-9
https://doi.org/10.1016/S0304-4238(98)00193-9
 
95. Yin L., Wang S., Tanaka K., Fujihara S., Itai A., Den X., Zhang S. 2016. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ. 39 : 245-258. doi: 10.1111/pce.12521
https://doi.org/10.1111/pce.12521
 
96. Yoshida S. 1965. Chemical aspects of the role of silicon in physiology of the rice plant. Bull. Natl. Inst. Agric. Sci. Ser. B. 15 : 1-58.
 
97. Zhu J.K. 2001. Plant salt tolerance. Trends Plant Sci. 6 : 66-71.
https://doi.org/10.1016/S1360-1385(00)01838-0