Visn. Hark. nac. agrar. univ., Ser. Biol., 2018, Issue 1 (43), с. 76-92


https://doi.org/10.35550/vbio2018.01.076




PROBLEMATIC QUESTIONS IN BIOCHEMISTRY OF PHOTOSYNTHESIS


V. V. Ivanishchev

Lev Tolstoy Tula State Pedagogical University
(Тula, Russia)
E-mail: avdey_VV@mail.ru


The article is devoted to the analysis of modern information in the field of biochemical mechanisms of photosynthesis. It is shown that our knowledge of these processes is still incomplete or limited. This concerns the process of oxygen release during photosynthesis, CO2 assimilation, manifestations of C2-photosynthesis. It is noted that the modern interpretation of the chemiosmotic theory is still not completed. Herewith a single (admittedly) mechanism of ATP formation is due to different modes of operation of electron transport chain of photosynthesis, referred as non-cyclic, cyclic and pseudocyclic electron transport. It is concluded that in general, numerous and diverse results of study of photosynthetic process are still insufficient to master them for use in biotechnological purposes.


Key words: photosynthesis, oxygen release, chemiosmotic theory, CO2 assimilation, photosynthesis products

 


REFERENCES


1. Abdullaev A., Gorenkova L.G., Ivanishchev V.V. 1989. Distribution of some enzymes of C4-acid metabolism in rye chloroplasts. Soviet Plant Physiol. (Fiziologiya Rastenii). 36 (4) : 538-541.
 
2. Abdullaev A., Gorenkova L.G., Abdurakhmanova Z.N., Ivanishchev V.V. 1992. The study of enzymes for the synthesis of C4 acids in chloroplasts of C3 In: Abstracts of the 2nd Congress of the All-Union Society of Plant Physiologists. Moscow : 121.
 
3. Garifzyanov A.P., Ivanishchev V.V., Zhukov N.N. 2011. Formation and physiological reactions of oxygen active forms in plants cells. Sovremennye problem nauki i obrazovaniya. 2 : 21. URL: www.science-education.ru/96-4600.
 
4. Ivanishchev V.V. 1992. Isolation and some properties of highly purified oxaloacetate decarboxylase from sunflower chloroplasts. Fiziologiya Rastenii. 39(4) : 760-768.
 
5. Ivanishchev V.V. 1997. Biological role of oxaloacetate metabolism in chloroplasts of C-3 plants. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 44(3) : 401-408.
 
6. Ivanishchev V.V. 2011. The production process in plants and its regulation (Productsionnyj protsess u rastenii i ego regulyatsiya). Tula : 114 p.
 
7. Ivanishchev V.V. 2017a. Bioenergy issues in the light of new ideas in biology. Izv. Tul'skogo Gos. Univer. Yestesvenniye Nauki. 1 : 98-109.
 
8. Ivanishchev V.V. 2017b Problems of oxygen production in photosynthesis. Izv. Tul'skogo Gos. Univer. Yestesvenniye Nauki. 2 : 88-96.
 
9. Ivanishchev V.V. 2017c. Issues of photosynthetic inorganic carbon assimilation in higher plants. Vestnik GOU DPO TO IPK I PPRO TO. 3 : 59-65.
 
10. Ivanishchev V.V., Kurganov B.I. 1992. Malate metabolism enzymes: characterization, regulation of activity and biological role. Biochimiya. 57 : 653-662.
 
11. Ivanishchev V.V., Kurganov B.I. 1993a. Isolation and kinetic properties of NAD-dependent malate dehydrogenase from chloroplasts of cotton leaves. Biochimiya. 58 : 606-612.
 
12. Ivanishchev V.V., Kurganov B.I. 1993b. Study of the properties of oxaloacetate decarboxylase from chloroplasts of sunflower leaves Biochimiya. 58 : 250-254.
 
13. Komissarov G.G. 2003. Photosynthesis: physicochemical approach. Moscow : 224 p.
 
14. Komissarov G.G. 2010. A New Concept of Photosynthesis: Opening Perspectives Herald of the international academy of science. Russian section. 2 : 52-57.
 
15. Mokronosov A.T., Gavrilenko V.F., Zhigalova T.V. 2006. Photosynthesis. Physiological, environmental and biochemical aspects Moscow : 448 p.
 
16. Terentiiev V.V., Khorobrykh A.A., Kozlov Yu.N., Klimov V.V. 2013. Possible role of Mn-bicarbonate complexes in the evolutionary origin of the water-oxidizing complex of photosystem 2. In: Photosynthesis: open questions and what we know today. Eds: Allakhverdiev S.N. et al. Izhevsk-Moscow : 205-240.
 
17. Blankenship R.E. 2014. Molecular Mechanisms of Photosynthesis. USA : 296 p.
 
18. Cheeseman J.M. 2006.Hydrogen peroxide concentrations in leaves under natural conditions. J. Exp. Bot. 57 : 2435-2444.
https://doi.org/10.1093/jxb/erl004
 
19. Douce R., Bourguignon J., Neuburger M., Reґbeilleґ F. 2001. The glycine decarboxylase system. A fascinating complex. Trends Plant Sci. 6 : 167-176.
https://doi.org/10.1016/S1360-1385(01)01892-1
 
20. Edwards G., Walker D. 1983. C3, C4: Mechanisms and Cellular and Environmental Regulation of Photosynthesis. Berkeley : 590 p.
 
21. Farquhar G.D., von Caemmerer S., Berry J.A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 Planta. 149 : 78-90.
https://doi.org/10.1007/BF00386231
 
22. Farquhar G.D., von Caemmerer S., Berry J.A. 2001. Models of photosynthesis. Plant Physiol. 125 : 42-45.
https://doi.org/10.1104/pp.125.1.42
 
23. Feng X., Jia Y., Cai P., Fei J., Li J. 2016. Coassembly of photosystem II and ATPase as artificial chloroplast for light-driven ATP synthesis. ACS Nano. 10 : 556-561.
https://doi.org/10.1021/acsnano.5b05579
 
24. Flügge U.I., Westhoff P., Leister D. 2016. Recent advances in understanding photosynthesis [version 1; referees: 3 approved]. F1000Research. - 5(F1000 Faculty Rev) : 2890.
https://doi.org/10.12688/f1000research.9744.1
 
25. Gontero B., Cardenas M.L., Ricard J. 1988. A functional five enzyme complex of chloroplasts involved in the Calvin cycle. Eur. J. Biochem. 173 : 437-443.
https://doi.org/10.1111/j.1432-1033.1988.tb14018.x
 
26. Heldt H.W., Pichulla B. 2011. Plant Biochemistry. USA : 622 p.
 
27. Hulsebosch R.J., Allakhverdiev S.I., Klimov V.V., Picorel R., Hoff A.J. 1998. Effect of bicarbonate on the S2 multiline EPR signal of the oxygen-evolving complex in photosystem II membrane fragments. FEBS Lett. 424 : 146-148.
https://doi.org/10.1016/S0014-5793(98)00163-X
 
28. Jain S., Murugavel R., Hansen L.D. 2004. ATP synthase and the torsional mechanism: Resolving a 50-year-old mystery. Curr. Sci. 87 : 16-19.
 
29. Jordan D.B., Ogren W.L. 1983. Species variation in kinetic properties of ribulose 1,5-bisphosphate carboxylase oxygenase. Arch. Biochem. Biophys. 227 : 425-430.
https://doi.org/10.1016/0003-9861(83)90472-1
 
30. Klimov V.V., Hulsebosch R. J., Allakhverdiev S. I., Wincencjusz H., van Gorkom H.J., Hoff A. J. 1997. Bicarbonate may be required for ligation of manganese in the oxygenevolving complex of photosystem II. Biochemistry. 36 : 16277-16281.
https://doi.org/10.1021/bi9717688
 
31. Ladygin V.G. 2016. Structural and functional organization of the pigment-protein complexes of the photosystems in mutant cells of green algae and higher plants. In :Photosynthesis. New Approaches to the Molecular, Cellular, and Organismal Levels. Ed. Allakhverdiev S.I. USA : 179-232.
https://doi.org/10.1002/9781119084150.ch5
 
32. Lenz K.E., Host G.E., Roskoski K., Noormets A., Sober A., Karnosky D.E. 2010. Analysis of a Farquhar-von Caemmerer-Berry leaf-level photosynthetic rate model for Populus tremuloides in the context of modeling and measurement limitations. Environ.Pollut. 158 : 1015-1022.
https://doi.org/10.1016/j.envpol.2009.08.004
 
33. Martin W., Scheibe R., Schnarrenberger C. 2000. The Calvin cycle and its regulation, in Advances in Photosynthesis. In: Photosynthesis: Physiology and Metabolism. Eds. Leegood R.C. et al. The Netherlands. 9 : 9-51.
https://doi.org/10.1007/0-306-48137-5_2
 
34. Nath S. 2004. The torsional mechanism of energy transduction and ATP synthesis as a breakthrough in our understanding of the mechanistic, kinetic and thermodynamic details. Thermochim. Acta. 422 : 5-17.
https://doi.org/10.1016/j.tca.2004.08.004
 
35. Nath S. 2008. The new unified theory of ATP synthesis/hydrolysis and muscle contraction, its manifold fundamental consequences and mechanistic implications and its applications in health and disease. Int. J. Mol. Sci. 9 : 1784-1840.
https://doi.org/10.3390/ijms9091784
 
36. Nath S., Villadsen J. 2015.Oxidative phosphorylation revisited. Biotechnol. Bioengineer. 112 : 429-437.
https://doi.org/10.1002/bit.25492
 
37. Nilsson H., Cournac L., Rappaport F., Messinger J., Lavergne J. 2016. Estimation of the driving force for dioxygen formation in photosynthesis. Biochim. Biophys. Acta. 1857 : 23-33.
https://doi.org/10.1016/j.bbabio.2015.09.011
 
38. Paul M.J., Foyer C.H. 2001. Sink regulation of photosynthesis. J. Exp. Bot. 52 : 1383-1400.
https://doi.org/10.1093/jexbot/52.360.1383
 
39. Pratt C.W., Cornely K. 2014. Essential Biochemistry. USA : 856 p.
 
40. Roy H., Andrews T.J. 2000. Rubisco: Assembly and mechanism. In: Advances in photosynthesis Photosynthesis: Physiology and metabolism. Eds. Leegood R.C. et al. The Netherlands. 9 : 53-83.
https://doi.org/10.1007/0-306-48137-5_3
 
41. Santabarbara S., Jennings R., Zucchelli G. 2014. Effects of quasi-equilibrium states on the kinetics of electron transfer and radical pair stabilisation in photosystem I. In: The Biophysics of Photosynthesis. Eds. J. Golbeck, A.van der Est. New York : 241-274.
https://doi.org/10.1007/978-1-4939-1148-6_8
 
42. Savikhin S., Jankowiak R. 2014. Mechanism of primary charge separation in photosynthetic reaction centers. In: The Biophysics of Photosynthesis / Eds. Golbeck J., van der Est A. New York : 193-240.
https://doi.org/10.1007/978-1-4939-1148-6_7
 
43. Schnarrenberger C., Flechner A., Martin W. 1995. Enzymatic evidence for a complete oxidative pentose phosphate pathway in chloroplasts and an incomplete pathway in the cytosol of spinach leaves. Plant Physiol. 108 : 609-614.
https://doi.org/10.1104/pp.108.2.609
 
44. Schulze S., Westhoff P., Gowik U. 2016. Glycine decarboxylase in C3, C4 and C3-C4 intermediate species. Current Opin. Plant Biol. 31 : 29-35.
https://doi.org/10.1016/j.pbi.2016.03.011
 
45. Shi N., Li X., Fan T., Zhou H., Zhang D., Zhu H. 2014. Artificial chloroplast: Au/chloroplast-morph-TiO2 with fast electron transfer and enhanced photocatalytic activity. Intern. J. Hydrogen Energy. 39 : 5617-5624.
https://doi.org/10.1016/j.ijhydene.2014.01.187
 
46. Stemler A., Govindjee. 1973. Bicarbonate ion as a critical factor in photosynthetic oxygen evolution. Plant Physiol. 52 : 119-123.
https://doi.org/10.1104/pp.52.2.119
 
47. Stettler M., Eicke S., Mettler T., Messerli G., Hortensteiner S., Zeeman S.C. 2009. Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation. Mol. Plant. 2 : 1233-1246.
https://doi.org/10.1093/mp/ssp093
 
48. Tolbert N.E. 1997. The C2 oxidative photosynthetic carbon cycle. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 : 1-25.
https://doi.org/10.1146/annurev.arplant.48.1.1
 
49. Umena Y., Kawakami K., Shen J.R., Kamiya N. 2011. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 E. Nature. 473 : 55-60.
https://doi.org/10.1038/nature09913
 
50. Vinyard D.J., Brudvig G.W. 2017. Progress toward a molecular mechanism of water oxidation in photosystem II. Annu. Rev. Phys. Chem. 68 : 101-116.
https://doi.org/10.1146/annurev-physchem-052516-044820
 
51. Voet D., Voet J.G. 2011. Biochemistry. USA : 846 p.
 
52. Wydrzynski T., Govindjee. 1975. A new site of bicarbonate effect in photosystem II of photosynthesis: evidence from chlorophyll fluorescence transients in spinach chloroplasts. Biochim. Biophys. Acta. 387 : 403-408.
https://doi.org/10.1016/0005-2728(75)90121-8
 
53. Yagi M., Yamazaki H., Aoki T., Narita K. 2009. Synthetic models of photosynthetic water oxidizing complex (OEC): O2 evolution from water by heterogeneous manganeseoxo complexes. In: Photosynthesis: Theory and applications in energy, biotechnology and nanotechnology. Eds. Buchner T.B., Ewingen N.H. New York : 179-192.
 
54. Young K.J., Brennan B.J., Tagore R., Brudvig G.W. 2015. Photosynthetic water oxidation: insights from manganese model chemistry. Acc. Chem. Res. 48 : 567-574.
https://doi.org/10.1021/ar5004175
 
55. Zeinalov Y. 2005. Mechanisms of photosynthetic oxygen evolution and fundamental hypotheses of photosynthesis. Handbook of photosynthesis. Ed. Pessarakli M.. Boca Raton : 21-37.
https://doi.org/10.1201/9781420027877.sec1