Visn. Hark. nac. agrar. univ., Ser. Biol., 2018, Issue 1 (43), с. 40-45


https://doi.org/10.35550/vbio2018.01.040




INFLUENCE OF STRESS TEMPERATURES ON LIPOXYGENASE ACTIVITY IN TRITICUM SPELTA


L. M. Babenko

Kholodny Institute of Botany
of National Academy of Sciences of Ukraine
(Kyiv, Ukraine)
E-mail: lilia.babenko@gmail.com


Effects of short-term thermal (+40°C, 2 h) and cold (+4°C, 2 h) stresses on lipoxygenase (LОX) activity in Triticum spelta L. were investigated. For the first time in above-ground part of T. spelta there were identified three molecular forms of 9-LOX namely LOX-1 (рНopt. 5,5), LOX-2 (рНopt. 5,8) and LOX-3 (рНopt. 6,2), and there in roots one 9-LOX (рНopt. 6,0). Activity of LOX-1 and LOX-2 in above-ground part and LOX in roots was found to increase significantly following a short-term hyperthermia. Intensity of response to a heat stress considerably exceeded that to a cold effect. It is assumed that various molecular forms of LOX that appear to have different cell localization are differentially involved in adaptation of T. spelta plants to a temperature stress.


Key words: Triticum spelta, lipoxygenase, hypothermia, hyperthermia

 


REFERENCES


1. Golik O.V., Tverdokhleb E.V., Pozdnyakov V.V., Didenko S.Yu., Boguslavskiy R.L. 2016. Types of wheat for organic agriculture. In: Basic and applied research in bioorganic agriculture in Russia, the CIS and the EU: International scientific and practical conference. Materials of reports and messages, vol. 1. Moscow : 368-378.
 
2. Gospodarenko G.M.., Kostogryz P.V., Lyubich V.V., Pariy M.F., Poltoretskiy I.O., Polyanetska I.O., Ryabovol L.O., Ryabovol Ya.S., Sukhodum O.G. 2016. Spelta wheat. Kyiv : 300 p.
 
3. Kosakisvska I.V., Babenko L.M., Vasyuk V.A., Voytenko L.V. 2017. Hyperthermia and ground drought effects on growth, content of photosynthetic pigments and epidermis microstructure in leaf of Triticum spelta L. Visn. Hark. nac. agrar. univ., Ser. Biol. 3(42) : 81-91.
 
4. Kosakivska I.V., Babenko L.M., Ustinova A.Yu., Skaterna T.D., Demirevska K. 2012. The influence of temperature conditions on lipoxygenase activity in seedling of rape Brassica napus var. Oleifera. Reports of the National Academy of Sciences of Ukraine. 6 : 134-137.
 
5. Morgun V.V., Sichkar S.M., Pochinok V.M., Golik O.V., Chugunkova T.V. 2015. Analysis of productivity structure of collection samples of rare wheat species. Factors in experimental evolution of organisms. 16 : 136-140.
 
6. Pokotylo I.V., Kolesnikov Y.S., Derevyanchuk M.V., Kharitonenko A.I., Kravets V.S. 2015. Lipoxygenases and plant cell metabolism regulation. Ukr. Biochem. J. 87(2) : 41-55.
https://doi.org/10.15407/ubj87.02.041
 
7. Andreou A, Feussner I. 2009. Lipoxygenases - Structure and reaction mechanism Phytochem. 70 : 1504-1510.
https://doi.org/10.1016/j.phytochem.2009.05.008
 
8. Babenko L.M., Kosakivska I.V., Akimov Yu.A., Klymchuk D.O., Skaternya T.D. 2014. Effect of temperature stresses on pigment content, lipoxygenase activity and cell ultrastructure of winter wheat seedlings. Genet. Plant Physiol. 4(1-2) : 117-125
 
9. Babenko L.M., Kosakivska І.V., Skaterna T.D. 2015. Jasmonic acid: a role in the regulation of biotechnology and biochemical processes in plants. Biotechnol. Acta. 82(2) : 36-51.
https://doi.org/10.15407/biotech8.02.036
 
10. Babenko L.M., Shcherbatiuk M.M., Skaterna T.D, Kosakivska I.V. 2017.Lipoxygenases and their metabolites in formation of plant stress tolerance. Ukr. Biochem.J. 89(1) : 5-21.
https://doi.org/10.15407/ubj89.01.005
 
11. Babenko L.M. 2017. Effect of temperature on lipoxygenase activity in varieties of Triticum aestivum L. differing in resistance to abiotic stressors. J. Stress Physiol. Biochem. 13(4) : 95-103.
 
12. Barlow K.M., Christy B.P., O'Leary G.J., Riffkin P.A., Nuttall J.G. 2015. Simulating the impact of extreme heat and frost events on wheat crop production: a review. Field Crops Res. 17 : 109-119.
https://doi.org/10.1016/j.fcr.2014.11.010
 
13. Borrego E.J., Kolomiets M.V. 2012. Lipid-mediated signaling between fungi and plants. In: Biocommunication of Fungi. New York: Springer : 249-260.
https://doi.org/10.1007/978-94-007-4264-2_16
 
14. Borrego E.J., Kolomiets M.V. 2016. Synthesis and functions of jasmonates in maize. Plants. 5(4). : 41-69.
https://doi.org/10.3390/plants5040041
 
15. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein uti-lizing the principle of protein-dye binding. Anal. Biochem. 72 : 248-254.
https://doi.org/10.1006/abio.1976.9999
 
16. Braidot E., Petrussa E., Micolini S. 2004. Biochemical and immunochemical evidences for the presence of lipoxygenase in plant mitochondria. J. Exp. Bot. 55 : 1655-1662.
https://doi.org/10.1093/jxb/erh197
 
17. Christensen S.A., Kolomiets M.V. 2011. The lipid language of plant-fungal interactions. Fungal Genet. Biol. 48 : 4-14.
https://doi.org/10.1016/j.fgb.2010.05.005
 
18. Feussner I., Wasternack C. 2002. The lipoxygenase pathway. Annu. Rev. Plant Biol. 53 : 275-297.
https://doi.org/10.1146/annurev.arplant.53.100301.135248
 
19. Gibian M.J., Vandenberg P. 1987. Product yield in oxygena-tion of linoleate by soybean lipoxygenase: The value of the molar extinction coefficient in the spectrophotometric . Anal. Biochem. 163 : 343-349.
https://doi.org/10.1016/0003-2697(87)90234-X
 
20. Hatfield J., Prueger J. 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. 10 : 4-10.
https://doi.org/10.1016/j.wace.2015.08.001
 
21. Hurkman W.J., Wood D.F. 2011.High temperature during grain fill alters the morphology of protein and starch deposits in the starchy endosperm cells of develop-ing wheat (Triticum aestivum L.) grain. J. Agric. Food Chem. 59 :4938-4946.
https://doi.org/10.1021/jf102962t
 
22. Ivanov I., Heydeck D., Hofheinz K., Roffeis J., O'Donnell V.B., Kuhn H., Walther M. 2010. Molecular enzymology of lipoxygenases. Arch. Biochem. Biophys. 503 : 161-174.
https://doi.org/10.1016/j.abb.2010.08.016
 
23. Joo Y.C., Oh D.K. 2012. Lipoxygenases: Potential starting bi-ocatalysts for the synthesis of signaling compounds. Biotechnol. Adv. 30 : 1524-1532.
https://doi.org/10.1016/j.biotechadv.2012.04.004
 
24. Karabudak T., Bor M., Özdemir F., Türkan İ. 2014. Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid de-saturase 7 and lipoxygenase gene expression. Mol. Biol. Rep. 41 : 1401-1410
https://doi.org/10.1007/s11033-013-2984-6
 
25. Kopich V. N., Kretynin S. V., Kharchenko O. V., Litvi-novskaya R. P., Chashina N. M., Khripach V.A. 2010. Effect of 24-epibrassinolide on lipoxygenase activity in maize seedlings under cold stress. Biopolym. Cell. 3 : 218-224.
https://doi.org/10.7124/bc.00015A
 
26. Kulkarni S., Das S., Funk C. 2002. Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase. J. Biol. Chem. 277 : 13167-13174.
https://doi.org/10.1074/jbc.M112393200
 
27. Larkindale B. Huang A. 2004. Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat-acclimated creeping bentgrass (Agrostis stolonifera). Environ. Exp.Bot. 51 : 57-67.
https://doi.org/10.1016/S0098-8472(03)00060-1
 
28. Pinhero R.G., Paliyath G., Yada R.Y., Murr D.P. 1998. Modulation of phospholipase D and lipoxygenase activities during chilling. Relation to chilling tolerance of maize seedlings. Plant Physiol. Biochem. 36 : 213-224.
https://doi.org/10.1016/S0981-9428(97)86878-7
 
29. Lee S.H., Ahn S.J., Im Y.J., Cho K., Chung G.C., Cho B.H., Han O. 2005. Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots. Biochem. Biophys. Res. Commun. 330 : 1194-1198.
https://doi.org/10.1016/j.bbrc.2005.03.098
 
30. Mao L. Panga H., Wangb G., Chenggang Zhuc C. 2007. Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress. Postharvest Biol. Technol. 44 : 42-47.
https://doi.org/10.1016/j.postharvbio.2006.11.009
 
31. Meng K., Hou Y., Han Y, Ban Q., He Y., Suo J., Rao J. 2017. Exploring the functions of 9-lipoxygenase (DkLOX3) in ultrastructural changes and hormonal stress response during persimmon fruit storage. Int. J. Mol. Sci. 18 : 589-592.
https://doi.org/10.3390/ijms18030589
 
32. Mosblech A., Feussner I., Heilmann I. 2009. Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 47 : 511-517.
https://doi.org/10.1016/j.plaphy.2008.12.011
 
33. Porta H., Rocha-Sosa M. 2002. Plant lipoxygenases. Physiological and molecular features. Plant Physiol. 130 : 15-21.
https://doi.org/10.1104/pp.010787
 
34. Roy S., Maheshwari N, Chauhan R., Kumar Sen N. 2011. Structure prediction and functional characterization of secondary metabolite proteins of Ocimum. Bioinformation. 6 : 315-319.
https://doi.org/10.6026/97320630006315
 
35. Savchenko T.V., Zastrijnaja O.M., Klimov V.V. 2014. Oxylipins and plant abiotic stress resistance. Biochemistry (Mosc.). 79 : 362-375.
https://doi.org/10.1134/S0006297914040051
 
36. Stumpe M., Feussner I. 2006. Formation of oxylipins by CYP74 enzymes. Phytochem. Rev. 5 : 347-357.
https://doi.org/10.1007/s11101-006-9038-9
 
37. Tiwari A., Avashthi H, Jha R., Srivastava A., Garg V., Pramod Ramteke W., Kumar A. 2016. Insights using the molecular model of lipoxygenase from finger millet (Eleusine coracana (L.)). Bioinformation. 12 : 156-164.
 
38. Van der Ent S., Van Wees S.C., Pieterse C.M. 2009. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbe. Phytochem. 70 : 1581-1588
https://doi.org/10.1016/j.phytochem.2009.06.009
 

39. Wasternack C., Song S. 2017. Jasmonates: an update on bio-synthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 68 : 1303-1321.

https://doi.org/10.1093/jxb/erw443