Visn. Hark. nac. agrar. univ., Ser. Biol., 2017, Issue 3 (42), с. 81-91


I. V. Kosakisvska, L. M. Babenko, V. A. Vasyuk, L.V. Voytenko

M.G. Kholodny Institute of Botany
of National Academy of Sciences of Ukraine
(Kyiv, Ukraine)

Effects of a short-term hyperthermia (40°С, 2 hours) and ground drought on the dynamics of growth processes, photosynthetic pigments content and epidermis microstructure in leaves of Triticum spelta L. have been studied. Morpho-physiological changes, observed in 14-day-old plants after both stressors impact, were shown to have non-specific and specific characteristics. In particular, the action of both stressors caused some reduction in mass and length of shoots and root system, but the most noticeable changes occurred following ground drought. After watering resumption plants size and mass did not reach control figures. According to morphometric parameters roots were more sensitive to hyperthermia than shoots, but they were characterized by a higher regeneration ability. Under conditions of hyperthermia and ground drought some decrease in the chlorophyll and carotenoids content was registered. It was shown that during regeneration after ground drought further reduction in the photosynthetic pigments content occurred. Microstructural analysis of the amphistomatic lamina epidermis revealed the presence of the same number of stomata with similar sizes of stomatal pores on the adaxial and abaxial surfaces. Under conditions of ground drought and hyperthermia the typical features of the lamina epidermis of T. spelta were preserved. With that, wax density increased.

Key words: Triticum spelta, hyperthermia, soil drought, photosynthetic pigments, epidermal microstructure



1. Andrianova Yu.E., Tarchevskyi I.A. 2000. Chlorophyll and Plant Productivity. Moscow : 135 p.
2. Babenko L.M. 2015. The influence of temperature on pigment composition and soluble protein content of wheat (Triticum aestivum L.) varieties with contrast termostability. Fiziol. rast. genet. 47(6) : 500-513.
3. Babenko L.M., Rozhkov R.V., Pariy Ya.F., Pariy M.F., Vodka M.V., Kosakisvska I.V. 2017. Triticum dicoccum (Schrank) Schuebl.: Origin, biological characteristics and perspectives of use in breeding and agriculture. Visn. Hark. nac. agrar. univ., Ser. Biol. 2(41) : 92-102.
4. Goncharov N.P., Kondratenko E.Ja. 2008. Wheat origin, domestication and evolution. Vestnik VOGiS. 12(1/2) : 159-179.
5. Horn E. 2008. Better than wheat, but ... Fermers'ke Gospodarstvo. 4(372).
6. Hospodarenko G.M., Kostogryz P.V., Lyubich B.B., Pariy M.F., Poltoretskyi I.O. 2016. Wheat spelled. Kyiv : 300 p.
7. Dorofeev V.F., Udachin. R.A., Semenova L.V. 1987.Wheat of the World. Leningrad : 560 p.
8. Zhukovskyi P.M. 1971. Cultivated Plants and Their Relatives. Leningrad : 752 p.
9. Zhuchenko A.A. 2008. Adaptive crop production (ecological and genetic aspects): theory and practice. Moscow : vol. 1, 814 p.
10. Zadontsev A.I., Bondarenko V.I., Samoshkin A.A. 1970. Age-related changes in the formation of actively absorbing surface of the root system of winter wheat. Fiziologiya i Biokhimiya Kul't. Ratenii. 2(3) : 254-258.
11. Kordyum E.L., Sytnyk K.M., Baranenko V.V., Belyavskaya H.A., Klimchuk D.A., Nedukha E.M. 2003. Cellular mechanisms of plant adaptation to the adverse effects of environmental factors in vivo. Kiev : 277 p.
12. Kosakivska I.V. 2003. Physiological and biochemical basics of plant adaptation to stress. Kyiv : 191 p.
13. Kosakivska I.V. 2007. Ecological direction in plant physiology: achievements and prospects. Fiziologiya i Biokhimiya Kul't. Ratenii. 39(4) : 279-290.
14. Kosakivska I.V., Babenko L.M., Skaterna T.D., Ustinova A.Yu. 2014. Influence of hypo- and hyperthermia on lipoxygenase activity, content of pigments and soluble proteins in Triticum aestivum L. cv. Yatran 60 seedlings. Fiziol. rast. genet. 46(3) : 212-220.
15. Kuperman F.M. 1977. Plant Morphophysiology. Moscow : 281 p.
16. Morgun V.V., Shvartau V.V., Kiriziiy D.A. 2008. Physiological bases of obtaining high yields of winter wheat. Fiziologiya i Biokhimiya Kul't. Ratenii. 40(6) : 463-479.
17. Pyatygin S.S. 2008. Stress in plants: a physiological approach. Zhurn. Obschei Biologii. 69(4) : 294-298.
18. Tverdokhlib O.V., Boguslavs'kiy R.L. 2012. Species variety of wheat, directions and prospects of its use. Zbirnyk Naukovykh Prats' Umans'kogo Natsional'nogo Universytetu Sadivnytstva. 80(1) : 37-47.
19. Tkachov V.I., Gulyaev B.I. 2010. Response of plants of different winter wheat varieties to a brief soil drought. Fiziologiya i Biokhimiya Kul't. Ratenii. 42(6) : 522-529.
20. Flyaksberger K.A. 1938. Wheat. Moscow, Liningrad : 296 c.
21. Shelepov V.V., Masalayi V.M., Penzev A.F. 2004. Morphology, Biology, Economic Value of Wheat. Mironovka : 524 с.
22. Scherbatyuk M.M., Brykov V.O., Martyn G.G. 2015. Preparation of plant tissue samples for electron microscopy (theoretical and practical aspects). Kyiv : 152 p.
23. Alves A.C., Setter T.L. 2004. Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Ann. Bot. 94 : 605-613.
24. Anjum S., Xie1 X., Wang L., Saleem M., Man C., Lei W. 2011. Morphological, physiological and biochemical re-sponses of plants to drought stress. Afr. J. Agricult. Res. 6(9) : 2026-2032.
25. Arjenaki G., Jabbari R., Morshedi A. 2012. Evaluation of drought stress on relative water content, chlorophyll content and mineral elements of wheat (Triticum aestivum L.) varieties. Int. J. Agricult. Crop Sci. 4(11) : 726-729.
26. Babenko L., Kosakivska I., Akimov Yu., Klymchuk D., Skaternya T. 2014. Effect of temperature stresses on pig-ment spectrum, lipoxygenase activity and cell ultrastructure of winter wheat seedlings. Genet. Plant Physiol. 4(1-2) : 117-125.
27. Bernard A., Joubès J. 2013. Arabidopsis cuticular waxes: ad-vances in synthesis, export and regulation. Prog. Lipid Res. 52 : 110-129.
28. Bi H., Luang S., Li Y., Bazanova N., Morran S., Song Z. 2016. Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis. J. Exp. Bot. 67 : 5363-5380.
29. Brenner E.D., Stahlberg R., Mancuso S., Vivanco J., Baluska F., Van Volkenburgh E. 2006. Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci. 11 : 413-419.
30. Das R., Bhagawati K., Boro A., Medhi T., Medhi B., Bhanisanar K. 2015. Relative performance of plant culti-vars under respective water deficit adaptation strategies: A case study. Curr. World Environment. 10 : 683-690.
31. Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S. 2009. Plant drought stress: effects, mechanisms and man-agement. Agron. Sustain. Dev. 29 : 185-212.
32. Fischer R.A. 2011. Wheat Physiology: A review of recent developments. Crop Pasture Sci. 62(2) : 95-114.
33. Foyer C.H., Descourvieres P., Kunert K.J. 1994. Photooxidative stress in plants. Plant. Physiol. 96 : 696-717.
34. Guerfel M., Baccouri O., Boujnah D., Chaibi W., Zarrouk M. 2009.Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf struc-ture in the two main Tunisian olive (Olea europaea L.). Cultivars. Sci. Horticult. 119 : 257-263
35. Hsiao T.C., Xu L. 2000.Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J. Exp. Bot. 51 : 1595-1616.
36. Kaiser W.M., Kaiser G., Schoner S., Neimanis S. 2011. Photosynthesis under osmotic stress. Differential recovery of photosynthetic activities of stroma enzymes, in-tact chloroplasts and leaf slices after exposure to high solute concentrations. Planta. 153 : 430-435.
37. Kosakivska I.V., Voytenko L.V., Likhnyovskiy R.V. 2015. Effect of temperature on Triticum aestivum L. seedlings growth and phytohormone balance. J. Stress Physiol. Biochem. 11(4) : 91-99.
38. Kosakivska I.V., Voytenko L.V., Likhnyovskiy R.V., Ustinova A.Y. 2014.Effect of temperature on accumulation of abscisic acid and indole-3-acetic acid in Triticum aestivum L. seedlings. Genet. Plant Physiol. 4(3-4) : 201-208.
39. Kotak S., Larkindale J., Lee U., von Koskull-Döring P., Vierling E., Scharf K.D. 2007. Complexity of heat stress response in plants. Current Opin. Plant Biol. 10 : 310-316.
40. Kyparissis A, Petropoulun Y, Manetas Y. 2005. Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L., Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J. Exp. Bot. 46 : 1825-1831.
41. Mafakheri A., Siosemardeh A., Bahramnejad B., Stru-ik P.C., Sohrabi Y. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Austr. J. Croup Sci. 4(8) : 580-585.
42. Manivannan P., Jaleel C.A., Sankar B., Kishorekumar A., Somasundaram R., Alagu Lakshmanan G.M., Panneerselvam R. 2007. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf. B: Biointerf. 59 : 141-149.
43. Meehl G.A., Stocker T.F., Collins W.D., Gaye A.J., Gregory J., Kitoh A., Knutti R. 2007. Global Climate Projections. Cambridge, New York : Cambridge University Press.
44. Mirnoff N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125 : 27-58.
45. Nyachiro J.M., Briggs K.G., Hoddinott .J, Johnson-Flanagan A.M. 2001. Chlorophyll content, chlorophyll fluorescence and water deficit in spring wheat. Cereal Res. Commun. 29 : 135-142.
46. Schmitz K. 2006. Dinkelein Getreide mit Zukunft. Back-mittelinstitut Aktuell. Sonderausgabe, pp. 1-8.
47. Wellburn A. 1994.The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144 : 307-313.
48. Yeats T.H., Rose J.K. 2013. The formation and function of plant cuticles. Plant Physiol. 163 : 5-20.
49. Zhang J., Kirkham M.B. 2016. Antioxidant response to drought in sunflower and sorghum seedlings. New Phytol. 132 : 361-373.