Visn. Hark. nac. agrar. univ., Ser. Biol., 2017, Issue 3 (42), с. 72-80


https://doi.org/10.35550/vbio2017.03.072




RESPONSE OF STOMATAL APPARATUS OF ARABIDOPSIS PLANTS DEFECTIVE IN JASMONATE SIGNALING TO ABSCISIC ACID AND METHYL JASMONATE ACTION


Т. О. Yastreb1, Yu. Е. Kolupaev1, 2, Yu. V. Karpets1, O.P. Dmitriev3

1V.V. Dokuchaev Kharkiv National Agrarian University
(Kharkiv, Ukraine)
E-mail: plant_biology@ukr.net
2V.N. Karazin Kharkiv National University
(Kharkiv, Ukraine)
3Institute of Cell Biology and Genetic Engineering
National Academy of Sciences of Ukraine
(Kyiv, Ukraine)


The effect of abscisic acid (ABA) and methyl jasmonate on the state of stomata of Arabidopsis thaliana plants of wild type (Columbia-0 Col-0) and defective ones in jasmonate signaling namely: jin1 (a mutant defective in gene, coding protein transcription factor JIN1/MYC2 – a one of key proteins in jasmonate signaling), jar1 (a mutant for the gene coding JAR1-synthase responsible for the formation of a physiologically active conjugate of jasmonic acid with isoleucine) and coi1 (a mutant for the gene encoding the COI1 protein that is involved in the removal of repressor proteins from transcriptional factors of jasmonate signaling) was investigated. In wild-type Arabidopsis plants, ABA at concentrations of 10-100 μM caused a significant reduction in the percentage of open stomata and the size of the stomatal aperture. In plants jin1 at the treatment with ABA at these concentrations, the indices describing the state of the stomatal apparatus remained practically unchanged. In the mutants jar1 and coi1 under the influence of ABA, the size of stomatal aperture decreased almost in the same way as in wild-type plants, however, the percentage of partially open stomata was somewhat larger. Under the influence of methyl jasmonate in concentrations of 50-200 μM, the stomatal aperture value in Col-0 plants decreased significantly, and the percentage of partially open stomata under the influence of 10 and 50 μM methyl jasmonate increased slightly, and when treated with 200 μM methyl jasmonate decreased. In the jin1 and jar1 mutants, when treating methyl jasmonate at various concentrations, the parameters characterizing the stomatal activity did not practically change, while the coi1 genotype had a tendency to some decrease in the size of the stomatal aperture. The role of proteins involved in jasmonate signaling in controlling the state of stomata by ABA and jasmonate is discussed.


Key words: Arabidopsis thaliana, stomata, jasmonic acid, metyl jasmonate, abscisic acid, jasmonate signaling

 


REFERENCES


1. Veselov D.S., Veselov S.Yu., Vysotskaya L.B., Kudoyarova G.R., Farkhutdinov R.G. 2007. Plant hormones: regulation of concentration, connection with growth and water metabolism (Ed. Shakirova F.M.). Moscow : 158 p.
 
2. Kolupaev Yu.E., Yastreb T.O., Lugova G.A. 2016. Role of jasmonates in plant adaptation to abiotic stressors. Fiziol. rast. genet. 48(2) : 105-121.
https://doi.org/10.15407/frg2016.02.095
 
3. Iakovenko O.M., Kretynin S.V., Kabachevskaya E.M., Lyakhnovich G.V., Volotovski D.I., Kravets V.S. 2008. Role of phospholipase C in ABA regulation of stomata function. Ukr. Bot. J. 65(4) : 605-613.
 
4. Acharya B.R., Assmann S.M. 2009.Hormone interactions in stomatal function. Plant Mol. Biol. 69 : 451-462.
https://doi.org/10.1007/s11103-008-9427-0
 
5. Assmann S.M., Shimazaki K. 1999. The multisensory guard cell. Stomatal response to blue light and abscisic acid. Plant Physiol. 119 : 809-815.
https://doi.org/10.1104/pp.119.3.809
 
6. Brosché M., Merilo E., Mayer F., Pechter P., Puzõrjova I., Brader G., Kangasjärvi J., Kollist H. 2010. Natural variation in ozone sensitivity among Ara-bidopsis thaliana accessions and its relation to sto-matal conductance. Plant Cell Environ. 33 : 914-925.
https://doi.org/10.1111/j.1365-3040.2010.02116.x
 
7. Davies W.J., Kudoyarova G., Hartung W. 2005. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the me-diation of the plant's response to drought. J. Plant Growth Regul. 24 : 285-295.
https://doi.org/10.1007/s00344-005-0103-1
 
8. de Ollas C., Dodd I.C. 2016. Physiological impacts of ABA-JA interactions under water-limitation. Plant Mol. Biol. 91 : 641-650.
https://doi.org/10.1007/s11103-016-0503-6
 
9. Geng S., Misra B.B., de Armas E., Huhman D.V., Alborn H.T., Sumner L.W., Chen S. 2016. Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics. Plant J. 88 : 947-962.
https://doi.org/10.1111/tpj.13296
 
10. Gibeaut D.M., Hulett J., Cramer G.R., Seemann J.R. 1997. Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol. 115 : 317-319.
https://doi.org/10.1104/pp.115.2.317
 
11. Gimenez-Ibanez S., Boter M., Ortigosa A., García-Casado G., Chini A., Lewsey M.G., Ecker J.R., Ntoukakis V, Solano R. 2017. JAZ2 controls stomata dy-namics during bacterial invasion. New Phytol. 213 : 1378-1392.
https://doi.org/10.1111/nph.14354
 
12. Kazan K. 2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20 : 219-229.
https://doi.org/10.1016/j.tplants.2015.02.001
 
13. Lackman P., González-Guzmán M., Tilleman S., Carqueijeiro I., Pérez A.C., Moses T., Seo M., Kanno Y., Häkkinen S.T., Van Montagu M.C., Theve-lein J.M., Maaheimo H., Oksman-Caldentey K.M., Rodriguez P.L., Rischer H., Goossens A. 2011. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc. Natl. Acad. Sci. USA. 108 : 5891-5896.
https://doi.org/10.1073/pnas.1103010108
 
14. Lorenzo O., Chico J.M., Sanchez-Serrano J.J., Solano R. 2004. Jasmonate-insensitive1 encodes a MYC tran-scription factor essential to discriminate between different jasmonate regulated defence responses in Arabidopsis. Plant Cell. 16 : 1938-1950.
https://doi.org/10.1105/tpc.022319
 
15. Melotto M., Underwood W., Koczan J., Nomura K., He S.Y. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell. 126 : 969-980.
https://doi.org/10.1016/j.cell.2006.06.054
 
16. Melotto M., Underwood W., He S.Y. 2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46 : 101-122.
https://doi.org/10.1146/annurev.phyto.121107.104959
 
17. Montillet J.L., Leonhardt N., Mondy S., Tranchimand S., Rumeau D., Boudsocq M., Garcia A.V., Douki T., BigearJ., Lauriere C., Chevalier A., Castresana C., Hirt H. 2013. An abscisic acid-independent oxylipin path-way controls stomatal closure and immune defense in Arabidopsis. PLOS Biol. 11(3) : e1001513
https://doi.org/10.1371/journal.pbio.1001513
 
18. Munemasa S., Oda K., Watanabe-Sugimoto M., Nakamura Y., Shimoishi Y., Murata Y. 2007. The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 143 : 1398-1407.
https://doi.org/10.1104/pp.106.091298
 
19. Munemasa S., Mori I.C., Murata Y. 2011. Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signal. Behav. 6(7) : 939-941.
https://doi.org/10.4161/psb.6.7.15439
 
20. Nilson S.E., Assmann S.M. 2007. The control of transpiration insights from Arabidopsis. Plant Physiol. 143 : 19-27.
https://doi.org/10.1104/pp.106.093161
 
21. Pei Z.M., Murata Y., Benning G. 2000. Calcium channels acti-vated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 406 : 731-734.
https://doi.org/10.1038/35021067
 
22. Ramírez V., Coego A., López A., Agorio A., Flors V., Vera P. 2009. Drought tolerance in Arabidopsis is con-trolled by the OCP3 disease resistance regulator. Plant J. 58 : 578-591.
https://doi.org/10.1111/j.1365-313X.2009.03804.x
 
23. Santino A., Taurino M., De Domenico S., Bonsegna S., Poltronieri P., Pastor V., Flors V. 2013. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep. 32 : 1085-1098.
https://doi.org/10.1007/s00299-013-1441-2
 
24. Savchenko T., Kolla V. A., Wang C.Q., Nasafi Z., Hicks D.R., Phadungchob B., Chehab W.E., Brandizzi F., Froehlich J., Dehesh K. 2014. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol. 164 : 1151-1160.
https://doi.org/10.1104/pp.113.234310
 
25. Semchuk N.M., Vasylyk Yu.V., Lushchak Ok.V., Lush-chak V.I. 2012. Effect of short-term salt stress on oxidative stress markers and antioxidant enzymes activity in tocopherol-deficient Arabidopsis thaliana plants. Ukr. Biokhim. Zhurn. 84(4) : 41-48.
 
26. Staswick P.E., Tiryaki I. 2004. The oxylipin signal jasmonic acid isactivated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell. 16 : 2117-2127.
https://doi.org/10.1105/tpc.104.023549
 
27. Suhita D., Raghavendra A.S., Kwak J.M., Vavasseur A. 2004. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 134 : 1536-1545.
https://doi.org/10.1104/pp.103.032250
 
28. Ton J., Flors V., Mauch-Mani B. 2009. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14 : 310-317.
https://doi.org/10.1016/j.tplants.2009.03.006
 
29. Toum L., Torres P.S., Gallego S.M., Benavídes M.P., Vojnov A.A., Gustavo E. 2016.Gudesblat coronatine inhib-its stomatal closure through guard cell-specific inhibition of NADPH oxidase-dependent ROS production. Front. Plant Sci. 7:1851. doi: 10.3389/fpls.2016.01851
https://doi.org/10.3389/fpls.2016.01851
 
30. Wasternack C., Hause B. 2013. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111 : 1021-1058.
https://doi.org/10.1093/aob/mct067
 
31. Webb A.R., McAinsh M.R., Mansfield T.A., Hetherington A.M. 1996. Carbondioxide induces increases in guard cell cytosolic free calcium. Plant J. 9 : 287-304.
https://doi.org/10.1046/j.1365-313X.1996.09030297.x
 
32. Yadav V., Mallappa C., Gangappa S.N., Bhatia S., Chattopadhyay S. 2005. A basic helix-loop-helix transcrip-tion factor in Arabidopsis, MYC2, acts as a re-pressor of blue light-mediated photomorphogenic growth. Plant Cell. 17 : 1953-1966.
https://doi.org/10.1105/tpc.105.032060
 
33. Yastreb T.O., Kolupaev Yu.E., Lugovaya A.A., Dmitriev A.P. 2017. Formation of adaptive reactions in Arabidopsis thaliana wild-type and mutant jin1 plants under action of abscisic acid and salt stress. Cytol. Genet. 51(5) : 325-330.
https://doi.org/10.3103/S0095452717050115