Visn. Hark. nac. agrar. univ., Ser. Biol., 2017, Issue 3 (42), с. 62-71


https://doi.org/10.35550/vbio2017.03.062




EFFECT OF HYPERTHERMIA ON ACCUMULATION AND LOCALIZATION OF ABSCISIC ACID IN VARIETIES OF GLYCINE MAX (L.) MERR. DIFFERING IN RESISTANCE TO ABIOTIC STRESSORS


I. V. Kosakivska, L. V. Voytenko, K. M. Yarotska

M.G. Kholodny Institute of Botany
of National Academy of Sciences of Ukraine
(Kyiv, Ukraine)
E-mail:
phytohormonology@ukr.net


Effects of a short-term heat stress (40°C, 2 hours) on the content of free and conjugated forms of ABA in the overground part and roots of the two Glycine max (L.) Merr varieties that differed in their resistance to abiotic stressors were studied using the high-performance liquid chromatography and mass spectrometry technique (HPLC MS). It was shown that under control conditions in organs of 35-day-old plants of the cold-resistant variety Podilska 416 and drought-resistant variety KiVin, grown from seeds inoculated with an active strain of nitrogen-fixing bacterium Bradyrhizobium japonicum 634b and noninoculated seeds, the free ABA form dominated with the exception of shoots of the drought-resistant variety KiVin. A non-specific response to hyperthermia was some increase in the endogenous ABA content in roots of both studied varieties and in the over-ground part of the KiVin variety. Presence of nitrogen-fixing nodules on the roots of both soybean varieties positively affected the hormone free form accumulation under hyperthermia conditions. The most pronounced changes in the ABA content during hyperthermia were observed in plants of the drought-resistant KiVin variety. Ability of the KiVin variety shoots to accumulate endogenous ABA as a result of high temperature effects corresponds to the variety drought resistance and is a component of the response forming during the first phase of the adaptation syndrome alarm. A possibility of rhizosphere nitrogen-fixing microorganisms to effect on the pattern of endogenous ABA accumulation in roots of soybean plants is discussed.


Key words: Glycine max, Bradyrhizobium japonicum, abscisic acid, hyperthermia

 


REFERENCES


1. Belimov A.A., Safronova V.I. 2011. ACC deaminase and plant-bacteria interactions (review). Sel'skokhozyaistvennaya biologiya. 3 : 10-15.
 
2. Voytenko L.V., Kosakivska I.V. 2016. Polyfunctional phytohormone abscisic acid. Visn. Hark. nac. agrar. univ., Ser. Biol. 1(37) : 27-41.
 
3. Glyan'ko A.K. 2015. Phytohormones and nodulation at leguminous plants. Visn. Hark. nac. agrar. univ., Ser. Biol. 3(36) : 6-19.
 
4. Drok E.N., Mamenko P.N., Omelchuk S.V., Kosakivska I.V. 2014. Features of symbiotic system and production of ethylene in varieties of Glycine max (L.) Merr., differing on resistance to abiotic stressors. Visn. Hark. nac. agrar. univ., Ser. Biol. 3(33) : 21-28.
 
5. Zhuk V.V., Musienko M.M. 2011. The influence of exogenous cytokinins on wheat resistance in drought conditions. Visn. agrarn. nauki. 3 : 34-36.
 
6. Kolupaev Yu.Ye., Kosakivska I.V. 2008. The role of signal systems and phytohormones in the realization of plants stress response. Ukr. Botan. J. 65(3) : 418-430.
 
7. Kosakivska I.V. 2003. Physiological and biochemical basics of plant adaptation to stress. Kyiv : 191 p.
 
8. Kosakivska I.V., Voytenko L.V., Yarotska K.M., Likhnyovskiy R.V. 2017. Effect of hyperthermia on accumulation and localization of indole-3-acetic acid in varieties of Glycine max (L.) Merr. differing on resistance to abiotic stressors. Visn. Hark. nac. agrar. univ., Ser. Biol. 2(41) : 32-40.
 
9. Kosakivska I.B., Yarotska K.M., Voytenko L.V., Babenko L.M. 2016. Effect of hyperthermia on cytokinin and pigments content of Glycine max (L.) Merr. varieties differed in thermotolerance. Fiziol. rast. genet. 48(1) : 56-64.
https://doi.org/10.15407/frg2016.01.056
 
10. Kots S.Ya., Morgun V.V., Patyka V.F., Valichenko S.M., Mamenko P.N., Kirizii D.A., Mikhalkov L.M., Beregovenko S.K., Mel'nikova N.N. 2011. Biological nitrogen fixation: legume-rhizobial symbiosis. Kyiv, 2011, vol. 2, 523 p.
 
11. Kots S.Ya., Volkogon M.V., Gryshchuk O.O. Ability of strains and tn5-mutants of Bradyrhizobium japonicum to synthesize IAA and ABA in vitro. 2010. Fiziol. i Biokhem. Kul't. Rastenii. (42) 6 : 491-496.
 
12. Kots S.Ya., Gryshchuk O.O. 2015. Phytohormones in the formation and functioning of symbiotic relationships of leguminous plants and nodule bacteria. Fiziol. rast. genet. 47(3) : 187-206.
 
13. Maksimov I.V. 2009. Abscisic acid in the plants-pathogen interaction. Russ. J. Plant Physiol. 56(6) : 742. 
https://doi.org/10.1134/S102144370906003X
 
14. Maksimov I.V., Veselova S.V., Nuzhnaya T.V., Sarvarova E.R., Khairullin R.M. 2015. Plant growth-promoting bacteria in regulation of plant resistance to stress factors. Russ. J. Plant Physiol. 62(6) : 715-726.
https://doi.org/10.1134/S1021443715060114
 
15. Moshynets O.V., Kosakivska I.V. 2010. Phytosphere ecology: plant-microbial interactions. 2. Phytosphere as a niche for plant-microbial interactions. FunctionaL microbial activity and its influence on plants. Visn. Hark. nac. agrar. univ., Ser. Biol. 3(21) : 6-22.
 
16. Talanova V.V., Titov A.F., Topchieva L.V., Frolova S.A. 2012. Effects of abscisic acid treatment on the expression of cysteine proteinase gene and enzyme inhibitor during wheat cold adaptation. Russ. J. Plant Physiol. 59(4) : 581-585.
https://doi.org/10.1134/S1021443712040140
 
17. Belimov A.A., Dodd I.C., Safronova V.I., Dumova V.A., Shaposhnikov A.I., Ladatko A.G., Davies W.J. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol. Biochem. - 2014. - V. 74. - P. 84-91.
https://doi.org/10.1016/j.plaphy.2013.10.032
 
18. Boiero L., Perrig D., Masciarelli O., Penna C., Cassán F., Luna V. 2007. Phytohormone production by three strains of Bradyrhizobium japonicum and pos-sible physiological and technological implications. Appl. Microbiol. Cell Physiol. 74 : 874-880.
https://doi.org/10.1007/s00253-006-0731-9
 
19. Cohen A.C., Travaglia C.N., Bottini R., Piccoli P.N. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany. 87 : 455-462.
https://doi.org/10.1139/B09-023
 
20. Ding Y.L., Kalo P., Yendrek C., Sun J.H., Liang Y., Marsh J.F., Harris J.M., Oldroyd G.E.D. 2008. Abscisic acid coordinates Nod factor and cytokinin signaling during the regulation of nodulation in Medicago trancatula. Plant Cell. 20 : 2681-2685.
https://doi.org/10.1105/tpc.108.061739
 
21. Ding Y., Oldroyd G.E.D. 2009. Positioning the nodule, the hormone dictum. Plant Signal. Behav. 4 : 89-93.
https://doi.org/10.4161/psb.4.2.7693
 
22. Dodd I.C., Zinovkina N.Y., Safronova V.I., Belimov A.A. 2010.Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157 : 361-379.
https://doi.org/10.1111/j.1744-7348.2010.00439.x
 
23. Ferguson B.J., Mathesius U. 2014.Phytohormone regulation of legume-rhizobia interactions. J. Chem. Ecol. 40 : 770-790.
https://doi.org/10.1007/s10886-014-0472-7
 
24. Ferguson B.J., Mathesius U. 2003.Signaling interactions dur-ing nodule development. J. Plant Growth Regul. 22 : 47-72.
https://doi.org/10.1007/s00344-003-0032-9
 
25. Forchetti G., Masciarelli O., Alemano S., Alvarez D., Abdala G. 2007. Endophytic bacteria in sunflower (Heli-anthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl. Microbiol. Biotechnol. 76 : 1145-1152.
https://doi.org/10.1007/s00253-007-1077-7
 
26. Gusta L., Trischuk R., Weiser C.J. 2005. Plant cold acclima-tion: the role of abscisic acid. J. Plant Growth Regul. 24 : 308-318.
https://doi.org/10.1007/s00344-005-0079-x
 
27. Hirayama T., Shinozaki K. 2007. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci. 12 : 343-351.
https://doi.org/10.1016/j.tplants.2007.06.013
 
28. Hirayama T., Shinozaki K. 2010. Research on plant abiotic stress responses in the post-genome era: past, pre-sent and future. Plant J. 61 : 1041-1052.
https://doi.org/10.1111/j.1365-313X.2010.04124.x
 
29. Jaillais Y., Chory J. 2010. Unraveling the paradoxes of plant hormone signaling integration. Nat. Struct. Mol. Biol. 17 : 642-645.
https://doi.org/10.1038/nsmb0610-642
 
30. Kang J., Hwang J., Lee M., Kim Y., Assmann S.M., Martinoia E., Lee Y. 2010. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. USA. 107 : 2355-2360.
https://doi.org/10.1073/pnas.0909222107
 
31. Karadeniz A., Topcuoğlu Ş., Finan C.E. 2006. Auxin, gibber-ellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22 : 1061-1064.
https://doi.org/10.1007/s11274-005-4561-1
 
32. Kosakivska I.V., Voytenko L.V., Likhnyovskiy R.V. 2015. Effect of temperature on Triticum aestivum L. seed-lings growth and phytohormone balance. J. Stress Physiol. Biochem. 11(4) : 91-99.
 
33. Kosakivska I.V., Voytenko L.V., Likhnyovskiy R.V., Ustinova A.Y. 2014.Effect of temperature on accumulation of abscisic acid and indole-3-acetic acid in Triticum aesticum L. seedling. Genet. Plant Physiol. 4(3-4) : 201-208.
 
34. Kuromori T., Miyaji T., Yabuuchi H., Shimizu H., Sugimoto E., Kamiya A., Moriyama Y., Shinozaki K. 2010. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl Acad. Sci. USA. 107 : 2361-2366.
https://doi.org/10.1073/pnas.0912516107
 
35. Libbenga K.R., van Iren F., Bogera R.J., Schraag-Lamera M.F. 1973.The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L. Planta. 114 : 29-39.
https://doi.org/10.1007/BF00390282
 
36. Masciarelli O., Llanes A., Luna V. 2014. A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol. Res. 169 : 609-615.
https://doi.org/10.1016/j.micres.2013.10.001
 
37. Murakami-Mizukami Y., Yamamoto Y., Yamaki S. 1991. Analyses of IAA and abscisic acid contents in nodules of soybean plants bearing VA mycorhizas. Soil Sci. Plant Nutr. 37 : 291-298.
https://doi.org/10.1080/00380768.1991.10415039
 
38. Nejad A.R., van Meeteren U. 2007. The role of abscisic acid in disturbed stomatal response characteristics of Trad-escantia virginiana during growth at high relative air humidity. J. Exp. Bot. 58 : 627-636.
https://doi.org/10.1093/jxb/erl234
 
39. Osakabe Y., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.S. 2014. ABA control of plant macroelement mem-brane transport systems in response to water deficit and high salinity. New Phytol. 202 : 35-49.
https://doi.org/10.1111/nph.12613
 
40. Park Y.G., Mun B.G., Kang S.M., Hussain A., Shah-zad R., Seo CW., Kim A.Y., Lee S.U., Oh K.Y., Lee D.Y., Lee I.J., Yun B.W. 2017. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and pro-motes the growth of soybean by modulating the production of phytohormones. PLoS One. 12 (3) : e0173203. Doi: 10.1371/journal.pone.0173203
https://doi.org/10.1371/journal.pone.0173203
 
41. Piotrowska A., Bajguz A. 2011. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins and jasmonates. Phytochem. 72 : 2097-2112.
https://doi.org/10.1016/j.phytochem.2011.08.012
 
42. Rock C.D., Sakata Y., Quatrano R.S. 2010. Stress signaling: the role of abscisic acid (ABA). In: Abiotic stress ad-aptation in plants (Eds. Pareek A., Sopory S.A., Bohner H.J.). Dordrecht : Springer, pp. 33-73.
https://doi.org/10.1007/978-90-481-3112-9_3
 
43. Sakata Y., Komatsu K., Takezawa D. 2014. ABA as a Univer-sal Plant Hormone. In: Progress in Botany, 75 (Eds. U. Lüttge et al.). Berlin, Heidelberg : Springer-Verlag, pp. 57-96.
https://doi.org/10.1007/978-3-642-38797-5_2
 
44. Sgroy V., Cassán F., Masciarelli O., Del Papa M.F., Lagares A., Luna V. 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biotechnol. 85 : 371-381.
https://doi.org/10.1007/s00253-009-2116-3
 
45. Stec N., Banasiak J, Jasiński M. 2016. Abscisic acid - an overlooked player in plant-microbe symbioses for-mation? Acta Biochim. Polonaca. 63(2015_1210) : 1-6.
https://doi.org/10.18388/abp.2015_1210
 
46. Sun J., Cardoza V., Mitchell D.M., Bright L., Ol-droyd G., Harris J.M. 2006. Crosstalk between Jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J. 46 : 961-970.
https://doi.org/10.1111/j.1365-313X.2006.02751.x
 
47. Takezawa D., Komatsu K., Sakata Y. 2011. ABA in bryophytes: how a universal growth regulator in life be-came a plant hormone? J. Plant Res. 124 : 437-453.
https://doi.org/10.1007/s10265-011-0410-5
 
48. Tominaga A., Nagata M., Futsuki K., Abe H., Uchiumi T., Abe M., Kucho K., Hashiguchi M., Akashi R., Hirsch A.M., Arima S., Suzuki A. 2009. Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicas. Plant Physiol. 151 : 1965-1976.
https://doi.org/10.1104/pp.109.142638
 
49. Tominaga A., Nagata M., Futsuki K., Abe H., Uchi-umi T., Abe M., Kucho K., Hashiguchi M., Akashi R., Hirsch A., Arima S., Suzuki F. 2010. Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicas. Plant Signal. Behav. 5 : 440-443.
https://doi.org/10.4161/psb.5.4.10849
 
50. Tsavkelova E.A., Klimova S.Yu., Cherdyntseva T.A., Netrusov A.I. 2006. Hormones and hormone-like substances of microorganisms: A review. Appl. Biochem. Microbiol. 42 : 229-235.
https://doi.org/10.1134/S000368380603001X
 
51. Umezawa T., Nakashima K., Miyakawa T., Kuromori T., Masaru Tanokura T., Shinozaki K., Yamaguchi-Shinozaki K. 2010. Molecular basis of the core regulatory network in ABA responses: Sensing, signaling and transport. Plant Cell Physiol. 51 : 1821-1839.
https://doi.org/10.1093/pcp/pcq156
 
52. Wilkinson S., Davies W.J. 2010. Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ. 33 : 510-525.
https://doi.org/10.1111/j.1365-3040.2009.02052.x