Visn. Hark. nac. agrar. univ., Ser. Biol., 2017, Issue 3 (42), с. 23-45


https://doi.org/10.35550/vbio2017.03.023




FUNCTIONING OF PLANTS ANTIOXIDATIVE SYSTEM UNDER SALT STRESS


Yu. E. Kolupaev1, 2, Yu. V. Karpets1, Т. О. Yastreb1

1 V.V.Dokuchaev Kharkiv National Agrarian University
(Kharkiv, Ukraine)
E-mail: plant_biology@ukr.net
2 V.N. Karazin Kharkiv National University
(Kharkiv, Ukraine)


The role of antioxidative system in plants adaptation against salt stress is discussed. The causes of secondary oxidative stress at influence of salinity on plants are considered. The contribution of various enzymatic and non-enzymatic antioxidants to plants defense against the negative consequences of salt stress is analysed. The considerable attention is paid to the proline as to the multifunctional protective compound performing osmoprotective and antioxidative functions at the same time. Possible mechanisms of functional interaction of constituents of plants protective systems are discussed. Data on the role of phytohormones and components of cellular signalling are provided in the induction of antioxidative system.


Key words: salt stress, reactive oxygen species, secondary oxidative stress, antioxidant enzymes, osmolytes, salt resistance induction

 


REFERENCES


1. Avalbaev A.M., Yuldashev R.A., Shakirova F.M. Physiological effects of phytohormones brassinosteroids on plants. 2006. Uspekhi Sovrem. Biologii. 126(2) : 192-200.
 
2. Baliuk S., Medvedev V., Miroshnichenko M., Skrylnik Ye., Timchenko D., Fatieev A., Khristenko A., Tsapko Yu. 2012. Environmental state of soils in Ukraine. geogr. z. 2 : 38-42.
 
3. Baranenko V.V. 2006. Superoxide dismutase in plant cells. Tsitologiya. 48(6) : 465-474.
 
4. Vayner A.O., Kolupaev Yu.E., Yastreb T.O. 2013. Participation of hydrogen peroxide in induction of proline accumulation in millet plants under action of NaCl. Hark. nac. agrar. univ., Ser. Biol. 2(29) : C. 32-38.
 
5. Vayner A.A., Kolupaev Yu.E., Yastreb T.O., Khripach V.A. 2014. 24-Epibrassinolide induces salt tolerance of millet (Panicum miliaceum) seedlings involving reactive oxygen species. Dokl. NAS Belarus. 58(4) : 67-70.
 
6. Veselov D.S., Markova I.V., Kudoyarova G.R. 2007. A Response of plants to salinization and formation of salt tolerance. Uspekhi Sovrem. Biologii. 127(5) : 482-493.
 
7. Karpets Yu.V., Kolupaev Yu.E. 2017. Functional interaction of nitric oxide with reactive oxygen species and calcium ions at development of plants adaptive responses. Hark. nac. agrar. univ., Ser. Biol. 2(41) : 6-31.
 
8. Kolupaev Yu.E. 2016. Plant cell antioxidants and their role in ros signaling and plant resistance. Uspekhi Sovrem. Biologii. 136(2) : 181-198.
 
9. Kolupaev Yu.E., Vayner A.A., Yastreb T.O. 2014. Proline: Physiological functions and regulation of its content in plants under stress conditions . Hark. nac. agrar. univ., Ser. Biol. 2(32) : 6-22.
 
10. Kolupaev Yu.Ye., Karpets Yu.V., Obozniy O.I. 2011. Plants antioxidative system: participation in cell signaling and adaptation to influence of stressors. Visn. Hark. nac. agrar. univ., Ser. Biol. 1(22) : 6-34.
 
11. Kolupaev Yu.Ye., Karpets Yu.V. 2010. Formation of plants adaptive reactions to abiotic stressors influence. Kyiv : 350 p.
 
12. Kolupaev Yu.E., Firsova E.N., Yastreb T.O., Lugovaya A.A. 2017. The participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. Appl. Biochem. Microbiol. 53(5) 573-579.
https://doi.org/10.1134/S0003683817050088
 
13. Kolupaev Yu.E., Yastreb T.O. 2015. Physiological functions of nonenzymatic antioxidants in plants. Visn. Hark. nac. agrar. univ., Ser. Biol. 2(35) : 6-25.
 
14. Kolupaev Yu.E., Karpets Yu.V., Musatenko L.I. 2007. The participation of reactive oxygen species in the induction of salt tolerance of wheat seedlings by salicylic acid. Dopovidi NAN Ukrainy. 6 : 154-158.
 
15. Olenichenko N.A., Zagoskina N.V., Astakhova N.V., Trunova T.I., Kuznetsov Yu.V. 2008. Primary and secondary metabolism of winter wheat under cold hardening and treatment with antioxidants. Appl. Biochem. Microbiol. 44(5) : 535. 
https://doi.org/10.1134/S0003683808050141
 
16. Pradedova E.V., Nimaeva O.D., Salyaev R.K. Redox processes in biological systems. Russ. J. Plant Physiol. 64(6) : 822-832. 
https://doi.org/10.1134/S1021443717050107
 
17. Pradedova E.V., Tolpygina O.A., Isheeva O.D., Putilina T.E., Salyaev R.K. 2010. Glutathione and glutathione-S-transferase activities of the vacuoles of the beet (Beta vulgaris L.) roots. Doklady Biological Sciences. 433 : 275-278. 
https://doi.org/10.1134/S0012496610040113
 
18. Putilina F.E., Galkina O.V., Yeshchenko N.D., Dizhe G.P., Krasovskaya I.E. 2008. Free radical oxidation. St. Petersburg :161 p.
 
19. Radyukina N.L., Kartashov A.V., Ivanov Yu.V., Shevyakova N.I., Kuznetsov Vl.V. 2007. Functioning of defense systems in halophytes and glycophytes under progressing salinity. Russ. J. Plant Physiol. 54(6) : 806-815.
https://doi.org/10.1134/S1021443707060131
 
20. Radyukina N.L., Toaima I.M., Zaripova N.R. 2012. The involvement of low-molecular antioxidants in cross-adaptation of medicine plants to successive action of UV-B radiation and salinity. Russ. J. Plant Physiol. 59(1) : 71-78.
https://doi.org/10.1134/S1021443712010165
 
21. Rozentsvet O.A., Nesterov V.N., Bogdanova E.S. 2017. Structural, physiological, and biochemical aspects of salinity tolerance of halophytes. Russ. J. Plant Physiol. 64(4) : 251-265.
https://doi.org/10.1134/S1021443717040112
 
22. Soshinkova T.N., Radyukina N.L., Korolkova D.V., Nosov A.V. 2013. Proline and functioning of the antioxidant system in Thellungiella salsuginea plants and cultured cells subjected to oxidative stress. Russ. J. Plant Physiol. 60(1) 41-54.
https://doi.org/10.1134/S1021443713010093
 
23. Tarakhovskiy Yu.S., Kim Yu.A., Abdrasilov B.S., Muzafarov E.N. 2013. Flavonoids: biochemistry, biophysics, medicine. Pushchino : 310 p.
 
24. Qi Y.C., Liu W.Q., Qiu L.Y., Zhang S.M., Ma L., Zhang H. 2010. Overexpression of glutathione S-transferase gene increases salt tolerance of arabidopsis. Russ. J. Plant Physiol. 57(2) : 245-253.
https://doi.org/10.1134/S102144371002010X
 
25. Cherenkevich S.N., Martinovich G.G., Martinovich I.V., Gorudko I.V., Shamova, E.V. 2013. Redox regulation of cellular activity: concepts and mechanisms. Proceedings of the National Academy of Sciences of Belarus. Series of Biological Sciences. 1 : 92-108.
 
26. Zhao F.Y., Liu T., Xu Z.J. 2010. Modified responses of root growth and reactive oxygen species-scavenging system to combined salt and heat stress in transgenic rice. Russ. J. Plant Physiol. 57(4) :518-525.
https://doi.org/10.1134/S1021443710040096
 
27. Shevyakova N.I., Bakulina E. A., Kuznetsov V.V. 2009. Proline antioxidant role in the common ice plant subjected to salinity and paraquat treatment inducing oxidative stress. Russ. J. Plant Physiol. 56(5) : 736-742.
https://doi.org/10.1134/S1021443709050124
 
28. Yastreb T.O. 2012. Influence of aromatic and succinic acids on superoxide dismutase activity and proline content in wheat seedlings under salt stress conditions. Visn. Hark. nac. agrar. univ., Ser. Biol. 3(27) : 50-57.
 
29. Yastreb T.O., Kolupaev Yu.E., Karpets Yu.V., Dmitriev A.P. 2017. Effect of nitric oxide donor on salt resistance of Arabidopsis jin1 mutants and wild-type plants. Russ. J. Plant Physiol. 64(2) : 207-214.
https://doi.org/10.1134/S1021443717010186
 
30. Yastreb T.O., Kolupaev Yu.E., Lugovaya A.A., Dmitriev A.P. 2016. Content of osmolytes and flavonoids under salt stress in arabidopsis thaliana plants defective in jasmonate signaling. Appl. Biochem. Microbiol. 52(2) : 223-229.
https://doi.org/10.1134/S0003683816020186
 
31. Yastreb T.O., Kolupaev Yu.E., Shvidenko N.V., Lugovaya A.A., Dmitriev A.P. 2015. Salt stress response in arabidopsis thaliana plants with defective jasmonate signaling. Appl. Biochem. Microbiol. 51(4) : 451-454.
https://doi.org/10.1134/S000368381504016X
 
32. AbdElgawad H., Zinta G., Hegab M.M., Pandey R., As-ard H., Abuelsoud W. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front. Plant Sci. - 2016. - V. 7:276.
https://doi.org/10.3389/fpls.2016.00276
 
33. Ahanger M.A., Agarwal R.M. 2017. Salinity stress induced alterations in antioxidant metabolism and nitrogen as-similation in wheat (Triticum aestivum L.) as influ-enced by potassium supplementation. Plant Physiol. Biochem. 115 : 449-460.
https://doi.org/10.1016/j.plaphy.2017.04.017
 
34. Alhasnawi A.N., Che Radziah C.M.Z., Kadhimi A. A., Isahak A., Mohamad A., Yusoff W.M.W. 2016. Enhance-ment of antioxidant enzymes activities in rice callus by ascorbic acid under salinity stress. Biol. Plant. 60 : 783-787.
https://doi.org/10.1007/s10535-016-0603-9
 
35. Ali B., Hayat S., Fariduddin Q., Ahmad A. 2008. 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere. 72 : 1387-1392.
https://doi.org/10.1016/j.chemosphere.2008.04.012
 
36. Alscher R.G., Erturk N., Heath L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53 : 1331-1341.
https://doi.org/10.1093/jxb/53.372.1331
 
37. Asada K. 1999. The water-water cycle in chloroplasts: scav-enging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 : 601-639.
https://doi.org/10.1146/annurev.arplant.50.1.601
 
38. Aubert S., Hennion F., Bouchereau A., Gout E., Blingy R., Dome A.J. 1999. Subcellular compartmentation of pro-line in the leaves of the subantartic Kerguelen cab-bage Pringlea antiscorbutica R-Br. In vivo C-13 NMR study. Plant Cell Environ. 22 : 255-259.
https://doi.org/10.1046/j.1365-3040.1999.00421.x
 
39. Azevedo-Neto A.D., Prisco J.T., Eneas-Filho J., Medei-ros J.V.R. Gomes-Filho E. 2005. Hydrogen peroxidepre treatment induces salt stress acclimationin maize plants. J. Plant Physiol. 162 : 1114-1122.
https://doi.org/10.1016/j.jplph.2005.01.007
 
40. Bela K., Horváth E. Gallé Á., Szabados L., Tari I., Csiszár J. 2015. Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant develop-ment and stress responses. J. Plant Physiol. 176 : 192-201
https://doi.org/10.1016/j.jplph.2014.12.014
 
41. Bestwick C.S., Brown I.R., Bennett M.H.R., Mans-field J.W. 1997. Localization of hydrogen peroxide accu-mulation during the hypersensitive reaction of let-tuce cells to Pseudomonas syringae pv. Phaseolicola. Plant Cell. 9 : 209-221.
https://doi.org/10.1105/tpc.9.2.209
 
42. Bhatt D., Bhatt M.D., Dobriyal A.K., Arora S. 2017. Effect of exogenous application of H2O2 in eleusine coracana plants is correlated with increased activity of antiox-idant enzymes in a time dependent manner. In: Int. Conf. Recent Trends Science, Technology and Man-agement. Aurangbad (India), pp. 213-221.
 
43. Bhusan D., Das.K., Hossain M., Murata Y., Hoque M.A. 2016. Improvement of salt tolerance in rice (Oryza sativa L.) by increasing antioxidant defense systems using exogenous application of proline. Austral. J. Crop Sci. 10 : 50-56.
 
44. Blokhina O., Virolainen E., Fagerstedt K.V. 2003. Antioxi-dants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 91 : 179-194.
https://doi.org/10.1093/aob/mcf118
 
45. Blumwald E., Aharon G.S., Apse M.P. 2000. Sodium transport in plant cells. Biochem. Biophys. Acta. 1465 : 140-151.
https://doi.org/10.1016/S0005-2736(00)00135-8
 
46. Bohnert H.J., Nelson D.E., Jensen R.G. 1995. Adaptations to environmental stresses. Plant Cell. 7 : 1099-1111.
https://doi.org/10.1105/tpc.7.7.1099
 
47. Brigelius-Flohe R., Maiorino M. Glutathione peroxidases 2013. Biochim. Biophys. Acta. 1830. 3289-3303.
https://doi.org/10.1016/j.bbagen.2012.11.020
 
48. Carvalho K., Campos M.K., Domingues D.S., Perei-ra L.F., Vieira L.G. 2013. The accumulation of endoge-nous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol. Biol. Rep. 40 : 3269-3279.
https://doi.org/10.1007/s11033-012-2402-5
 
49. Chen C., Dickman M.B. 2005. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc. Natl. Acad. Sci. USA. 102 : 3459-3464.
https://doi.org/10.1073/pnas.0407960102
 
50. Christou A., Manganaris G.A., Papadopoulos I., Fotopoulos V. 2013. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J. Exp. Bot. 64 : 1953-1966.
https://doi.org/10.1093/jxb/ert055
 
51. Creissen G.P., Broadbent P., Kular B., Reynolds H. 1994. Manipulation of glutathione reductase in transgenic plants: implications for plant responses to environmental stress. Proc. Royal Society Edinburgh, Section B: Biolog. Sci. 102 : 167-175.
https://doi.org/10.1017/S0269727000014081
 
52. Deef H.E. 2007. Influence of salicylic acid on stress tolerance during seed germination of Triticum aestivum and Hordeum vulgare. Adv. Biol. Res. 1 : 40-48.
 
53. del Rio L.A., Corpas J., Sandalio L.M., Palma J.M., Gómez M., Barroso J.B. 2002. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot. 53 : 1255-1272.
https://doi.org/10.1093/jexbot/53.372.1255
 
54. del Rio L.A., Sandalio L.M., Altomare D., Zilinskas B. 2003. Mitochondria and peroxisomal manganese superox-ide dismutase. J. Exp. Bot. 54 : 923-933.
https://doi.org/10.1093/jxb/erg091
 
55. Diaz-Vivancos P., Faize M., Barba-Espin G., Faize L., Petri C., Hernandez J.A., Burgos L. 2013. Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol. J. 11 : 976-985.
https://doi.org/10.1111/pbi.12090
 
56. Dionisio-Sese M., Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135 : 1-9.
https://doi.org/10.1016/S0168-9452(98)00025-9
 
57. Dixon D.P., Cummins I., Cole D.J., Edwards R. 1998. Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 3 : 258-266.
https://doi.org/10.1016/S1369-5266(98)80114-3
 
58. Dombrecht B., Xue G.P., Sprague S.J., Kirkegaard J.A., Ross J.J., Reid J.B., Fitt G.P., Sewelam N., Schenk P.M., Manners J.M., Kazan K. 2007. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell. 19 : 2225-2245.
https://doi.org/10.1105/tpc.106.048017
 
59. Eshdat Y., Holland D., Faltin Z., Ben-Hayyim G. 1997. Plant glutathione peroxidases. Physiol. Plant. 100 : 234-240.
https://doi.org/10.1111/j.1399-3054.1997.tb04779.x
 
60. Es-Safi N.E., Ghidouche S., Ducrot P.H. 2007. Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules. 12 : 2228-2258.
https://doi.org/10.3390/12092228
 
61. Fariduddin Q., Khalil R.R. A.E., Mir B.A., Yusuf M., Ahmad A. 2013.24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ. Monit. Assess. 185 : 7845-7856.
https://doi.org/10.1007/s10661-013-3139-x
 
62. Flowers T.J., Colmer T.D. 2008. Salinity tolerance in halophytes.New Phytol. 179 : 945-963.
https://doi.org/10.1111/j.1469-8137.2008.02531.x
 
63. Flowers T.J., Galal H.K., Bromham L. 2010. Evolution of halophytes: multiple origins of salt tolerance in land plant. Funct. Plant Biol. 37 : 604-612.
https://doi.org/10.1071/FP09269
 
64. Foyer C.H., Noctor G. 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11 : 861-906.
https://doi.org/10.1089/ars.2008.2177
 
65. Foyer C.H., Shigeoka S. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 155 : 93-100.
https://doi.org/10.1104/pp.110.166181
 
66. Gharsallah C., Fakhfakh H., Grubb D., Gorsane F. 2016. Effect of salt stress on ion concentration, proline con-tent, antioxidant enzyme activities and gene expres-sion in tomato cultivars. AoB Plants. 8 : 55.
https://doi.org/10.1093/aobpla/plw055
 
67. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48 : 909-930.
https://doi.org/10.1016/j.plaphy.2010.08.016
 
68. Gondim F.A.,Gomes-Filho E.,Lacerda C.F., Prisco J.T., Neto A.D.A., Marques E.C. 2010. Pretreatment with H2O2 in maize seeds: effects on germination and seedling acclimation to salts tress. Braz. J. Plant Physiol. 22 : 103-112.
https://doi.org/10.1590/S1677-04202010000200004
 
69. Gould K.S., Lister C. 2006. Flavonoid functions in plants. In: Flavonoids: chemistry, biochemistry, and applications (Eds. Andersen O.M., Markham K.R.). Taylor & Francis Group, pp. 397-442.
https://doi.org/10.1201/9781420039443.ch8
 
70. Guan L.M., Scandalios J.G. 2000. Hydrogen peroxide-mediated catalase gene expression in response to wounding. Free Radical Biol. Med. 28 : 1182-1190.
https://doi.org/10.1016/S0891-5849(00)00212-4
 
71. Guo J., Pang Q., Wang L. Yu P., Li N., Yan X. 2012. Proteomic identification of MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana. Proteome Sci. 10 : 1-13.
https://doi.org/10.1186/1477-5956-10-57
 
72. Hagemann M., Murata N. 2003.Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol. 131 : 1628-1637.
https://doi.org/10.1104/pp.102.017277
 
73. Hasanuzzaman M., Hossain M.A., Fujita M. 2011. Nitric oxide modulates antioxidant defense and the methyl-glyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotech. Rep. 5 : 353-365.
https://doi.org/10.1007/s11816-011-0189-9
 
74. Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 : 463-499.
https://doi.org/10.1146/annurev.arplant.51.1.463
 
75. Hernandez J.A., Ferrer M.A., Jimenez A., Barcelo A.R., Sevilla F. 2001. Antioxidant systems and O2-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127 : 817-831.
https://doi.org/10.1104/pp.010188
 
76. Hernandez J.A., Jimenes A., Mullineaux P., Sevilla F. 1999. Response of antioxidant systems and leaf water relations to NaCl stress in pea. New Phytol. 141 : 241-251.
https://doi.org/10.1046/j.1469-8137.1999.00341.x
 
77. Hoque M.A., Banu M.N., Nakamura Y., Shimoishi Y., Murata Y. 2008. Proline and glycinebetaine enhance anti-oxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cul-tured tobacco cells. J. Plant Physiol. 165 : 813-824.
https://doi.org/10.1016/j.jplph.2007.07.013
 
78. Hossain M.A., Bhattacharjee S., Armin S.M., Qian P., Xin W., Li H.Y., Burritt D.J., Fujita M., Tran L.S.P. 2015. Hydrogen peroxide priming modulates abiotic oxi-dative stress tolerance: insights from ROS detoxifi-cation and scavenging. Front. Plant Sci. 6 : 420.
https://doi.org/10.3389/fpls.2015.00420
 
79. Isayenkov S.V. 2012. Physiological and molecular aspects of salt stress in plants. Cytol. Genet. 46 : 302-318.
https://doi.org/10.3103/S0095452712050040
 
80. Islam M.M., Hoque M.A., Okuma E., Banu M.N., Shimoishi Y., Nakamura Y., Murata Y. 2009a. Exogenous proline and glycinebetaine increase antioxidant en-zyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J. Plant Physiol. 166 : 1587-1597.
https://doi.org/10.1016/j.jplph.2009.04.002
 
81. Islam M.M., Hoque M.A., Okuma E., Jannat R., Banu M.N., Jahan M.S., Nakamura Y., Murata Y. 2009b. Proline and glycinebetaine confer cadmium tolerance on to-bacco bright yellow-2 cells by increasing ascorbate-glutathione cycle enzyme activities. Biosci. Biotechnol. Biochem. 73 : 2320-2323.
https://doi.org/10.1271/bbb.90305
 
82. Ivanov S., Konstantinova T., Parvanova D., Todorova D., Djilianov D., Alexieva V. 2001. Effect of high temper-atures on the growth, free proline content and some antioxidants in tobacco plants. Rep. Bulg. Acad. Sci. 54(7) : 71-74.
 
83. Jahantigh O., Najafi F., Badi H.N., Khavari-Nejad R.A., Sanjarian F. 2016. Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress. Acta Biol. Hung. 67 : 195-204.
https://doi.org/10.1556/018.67.2016.2.7
 
84. Jing X., Hou P., Lu Y., Deng S., Li N., Zhao R., Sun J., Wang Y., Han Y., Lang T., Ding M., Shen X., Chen S. 2015. Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast. Front. Plant Sci. 6 : 23.
https://doi.org/10.3389/fpls.2015.00023
 
85. Jithesh M.N., Prashanth S.R., Sivaprakash K.R., Parida A.K. 2006.Antioxidative response mechanisms in halophytes: their role in stress defense. J. Genetics. 85 : 237-254.
https://doi.org/10.1007/BF02935340
 
86. Joseph B., Jini D., Sujatha S. 2010. Insight into the role of ex-ogenous salicylic acid on plants growth under salt environment. Asian J. Crop Sci. 2 : 226-235.
https://doi.org/10.3923/ajcs.2010.226.235
 
87. Kavi Kishor P.B., Sangam S., Amrutha R.N. P., Laxmi S., Naidu K.R., Rao K.R.S.S., Rao S., Reddy K.J., Theriappan P., Sreenivasulu N. 2005.Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Sci. 88 : 424-438.
 
88. Khan N., Siddiqui M., Mohammad M.H.F., Naeem M. 2012. Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide27 : 210-218.
https://doi.org/10.1016/j.niox.2012.07.005
 
89. Khare T., Kumar V., Kavi Kishor P.B. 2015. Na+ and Cl- ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma. 252 : 1149-1165.
https://doi.org/10.1007/s00709-014-0749-2
 
90. Khlestkina E.K. 2013. The adaptive role of flavonoids: em-phasis on cereals. Cereal Res. Commun. 41 : 185-198.
https://doi.org/10.1556/CRC.2013.0004
 
91. Khripach V., Zhabinskii V., De Groot A. 2000. Twenty years of brassinosteroids: Steroidal plant hormones war-rant better crops for the XXI century. Ann. Bot. 86 : 441-447.
https://doi.org/10.1006/anbo.2000.1227
 
92. Koleška I., Hasanagić D., Maksimović I., Bosančić B., Kukavica B. 2017. The role of antioxidative metabolism of tomato leaves in long-term salt-stress response. J. Plant Nutr. Soil Sci. 180 : 105-112.
https://doi.org/10.1002/jpln.201600439
 
93. Kolupaev Yu.E., Karpets Yu.V. 2013. Participation of reactive oxygen species in formation of induced resistances of plants to abiotic stressors/ In: Handbook on Reactive Oxygen Species (ROS): Formation Mechanisms, Physiological Roles and Common Harmful Effects (Eds: Suzuki M., Yamamoto S.) New York : Nova Science Publishers, pp. 109-136.
 
94. Kumar N.S, Zhu W., Liang X., Zhang L., Demers A.J., Zimmerman M.C., Simpson M.A., Becker D.F. 2012. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radical Biol. Med. 53 : 1181-1191.
https://doi.org/10.1016/j.freeradbiomed.2012.07.002
 
95. Kumar V., Shriram V., Kavi Kishor P. B., Jawali N., Shitole M.G. 2010. Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol. Rep. 4(1) : 37-48.
https://doi.org/10.1007/s11816-009-0118-3
 
96. Kumar V., Khare T., Sharma M., Wani S.H. 2017. ROS-Induced signaling and gene expression in crops under salinity stress. Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress (Eds. Khan M.I.R., Khan N.A.). Springer Nature Singapore Pte Ltd., pp. 179-184.
https://doi.org/10.1007/978-981-10-5254-5_7
 
97. Kumari G.J., Reddy A.M., Naik S.T. S., Kumar G., Prasanthi J., Sriranganayakulu G., Reddy P. C., Chinta S. 2006. Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings. Biol. Plant. 50 : 219-226.
https://doi.org/10.1007/s10535-006-0010-8
 
98. Kuzniak E., Sklodowska M. 2004. The effect of Botrytic ciner-ea infection on the antioxidant proline of mitochon-dria from tomato leaves. J. Exp. Bot. 55 : 605-612.
https://doi.org/10.1093/jxb/erh076
 
99. Lai D.W., Mao Y., Zhou H., Li F., Wu M., Zhang J., He Z., Cui W., Xie Y. 2014. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablish-ment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci. 225 : 117-129.
https://doi.org/10.1016/j.plantsci.2014.06.006
 
100. Lázaro J.J., Jiménez A., Camejo D., Iglesias-Baena I., del Carmen Martí M., Lázaro-Payo A. Barranco-Medina S., Sevilla F. 2013. Dissecting the integrative anti-oxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation. Front. Plant Sci. 4 : 460.
https://doi.org/10.3389/fpls.2013.00460
 
101. Leshem Y., Seri L., Levine A. 2007. Induction of phosphatidyl-inositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J. 51 : 185-197.
https://doi.org/10.1111/j.1365-313X.2007.03134.x
 
102. Li Q.Y., Niu H.B., Yin J., Wang M.B., Shao H.B., Deng D.Z., Chen X.X., Ren J.P., Li Y.C. 2008. Protective role of exogenous nitric oxide against oxida-tivestress induced by salt stress in barley (Hordeum vulgare). Colloids Surf B Biointerfaces. 65 : 220-225.
https://doi.org/10.1016/j.colsurfb.2008.04.007
 
103. Li J.T., Qiu Z.B., Zhang X.W., Wang L.S. 2011. Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol. Plant. 33 : 835-842.
https://doi.org/10.1007/s11738-010-0608-5
 
104. Li T., Jia K.P., Lian H.L. Yang X., Li L., Yang H.Q. 2014. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochem. Biophys. Res. Commun. 454 : 78-83.
https://doi.org/10.1016/j.bbrc.2014.10.059
 
105. Liang X., Zhang L., Natarajan S.K., Becker D.F. 2013. Proline mechanisms of stress survival. Antioxid. Redox Signal. 19 : 998-1011.
https://doi.org/10.1089/ars.2012.5074
 
106. Lin Y., Liu Z., Shi Q., Wang X., Wei M., Yang F. 2012a. Exoge-nous nitric oxide (NO) increased antioxidant capaci-ty of cucumber hypocotyl and radicle under salt stress. Sci. Hort. 142 : 118-127.
https://doi.org/10.1016/j.scienta.2012.04.032
 
107. Lin A., Wang Y., Tang J., Xue P., Li C., Liu L., Hu B., Yang F., Loake G.J., Chu C. 2012b. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol. 158 : 451-464.
https://doi.org/10.1104/pp.111.184531
 
108. Lisjak M., Teklic T., Wilson I.D., Whiteman M., Hancock J.T. 2013. Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ. 36 : 1607-1616.
https://doi.org/10.1111/pce.12073
 
109. Liu Y., Wu R., Wan Q., Xie G., Bi Y. 2007. Glucose-6-phosphate dehydrogenase plays a pivotal role in ni-tric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. Plant Cell Physiol. 48 : 511-522.
https://doi.org/10.1093/pcp/pcm020
 
110. Liu J., Zhu J.K. 1997. Proline accumulation and salt-stressinduced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol. 114 : 591-596.
https://doi.org/10.1104/pp.114.2.591
 
111. López-Carrión A.I., Castellano R., Rosales M.A., Ruiz J.M., Romero L. 2008. Role of nitric oxide under saline stress: implications on proline metabolism. Biol. Plant. 52 : 587-591.
https://doi.org/10.1007/s10535-008-0117-1
 
112. Ma J., Yuan Y., Ou J. 2006. Influencing of salicylic acid on roots of rice plants at NaCl-stress. J. Wuhan Univ. Natur. Sci. Ed. 52(4) : 471-474.
 
113. Ma L., Zhang H., Sun L., Jiao Y., Zhang G., Miao C., Hao F. 2012. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J. Exp. Bot. 63 : 305-317.
https://doi.org/10.1093/jxb/err280
 
114. Marrs K.A. 1996. The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 : 127-158.
https://doi.org/10.1146/annurev.arplant.47.1.127
 
115. Matysik J., Alia B., Bhalu B., Mohanty P. 2002. .Molecular mechanism of quenching of reactive oxygen species by proline under stress in plant. Curr. Sci. 82 : 525-532.
 
116. Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25 : 239-250.
https://doi.org/10.1046/j.0016-8025.2001.00808.x
 
117. Munns R., Tester M. 2008. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 59 : 651-681.
https://doi.org/10.1146/annurev.arplant.59.032607.092911
 
118. Mur L.A.J., Mandon J., Persijn S., Cristescu S.M., Moshkov I.E., Novikova G.V., Hall M.A., Har-ren F.J.M., Hebelstrup K.H., Gupta K.J. 2013. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants. 5 : pls052.
https://doi.org/10.1093/aobpla/pls052
 
119. Neill S.O., Gould K.S. 2003. Anthocyanins in leaves: light attenuators or antioxidants? Funct. Plant Biol. 30(8) : 865-873.
https://doi.org/10.1071/FP03118
 
120. Noctor G., Mhamdi A., Foyer C.H. 2014. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol. 164 : 1636-1648.
https://doi.org/10.1104/pp.113.233478
 
121. Ogawa K., Kanematsu S., Asada K. 1996. Intra and extra-cellular localization of «cytosolic» Cu/Zn-superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physiol. 37: 790-799.
https://doi.org/10.1093/oxfordjournals.pcp.a029014
 
122. Ogawa K., Kanematsu S., Asada K. 1997. Generation of su-peroxide anion and localisation of Cu/Zn-superoxide dismutase in vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol. 38 : 1118-1126.
https://doi.org/10.1093/oxfordjournals.pcp.a029096
 
123. Okuma E., Murakami Y., Shimoishi Y., Tada M., Murata Y. 2004.Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Sci. Plant Nutr. 50 : 1301-1305.
https://doi.org/10.1080/00380768.2004.10408608
 
124. Ozgur R., Uzilday B., Sekmen A.H., Turkan I. 2013. Reactive oxygen species regulation and antioxidant defense in halophytes. Funct. Plant Biol. 40 : 832-847.
https://doi.org/10.1071/FP12389
 
125. Palma J.M., Huertas E.L., Corpas F.J., Sandalio L.M., Gómez M., Del Río L.A. 1998. Peroxisomal manganese su-peroxide dismutase: purification and properties of the isozyme from pea leaves. Physiol. Plant. 104 : 720-726.
https://doi.org/10.1034/j.1399-3054.1998.1040429.x
 
126. Parida A., Das A.B., Das P. 2002. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J. Plant Biol. 45 : 28-36.
https://doi.org/10.1007/BF03030429
 
127. Parida A.K., Das A.B. 2005.Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60 : 324-349.
https://doi.org/10.1016/j.ecoenv.2004.06.010
 
128. Poór P., Laskay G., Tari I. 2015. Role of nitric oxide in salt stress-induced programmed cell death and defense mechanisms. In: Nitric Oxide Action in Abiotic Stress Responses in Plants (Eds. Khan M.N. et al.). Switzerland: Springer International Publishing, pp. 193-219.
https://doi.org/10.1007/978-3-319-17804-2_13
 
129. Qureshi M.I., Abdin M.Z., Ahmad J., Iqbal M. 2013. Effect of longterm salinity on cellular antioxidants, compati-ble solute and fatty acid profile of Sweet Annie (Artemisia annua L.). Phytochemistry. 95 : 215-223.
https://doi.org/10.1016/j.phytochem.2013.06.026
 
130. Rady M.M., Hemida K.A. 2016. Sequenced application of ascorbate-proline-glutathione improves salt toler-ance in maize seedlings. Ecotoxicol. Environ. Saf. 133 : 252-259.
https://doi.org/10.1016/j.ecoenv.2016.07.028
 
131. Rahman A., Hossain M. S., Mahmud J.A., Nahar K., Hasanuzzaman M., Fujita M. 2016. Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiol Mol. Biol. Plants. 22 : 291-306.
https://doi.org/10.1007/s12298-016-0371-1
 
132. Razavizadeh R., Ehsanpour A.A. 2009.Effects of salt stress on proline content, expression of delta-1-pyrroline-5-carboxylate synthetase, and activities of catalase and ascorbate peroxidase in transgenic tobacco plants. Biol. Lett. 46(2) : 63-75.
https://doi.org/10.2478/v10120-009-0002-4
 
133. Rhoads D.M., Umbach A.L., Subbaiah C.C., Siedow J.N. 2006. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 141 : 357-366.
https://doi.org/10.1104/pp.106.079129
 
134. Romero-Puertas M.C., Corpas F.J., Sandalio L.M., Leterrier M., Rodríguez-Serrano M., Del Río L.A., Palma J.M. 2006. Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol. 170 : 432-452.
https://doi.org/10.1111/j.1469-8137.2005.01643.x
 
135. Roveda-Hoyos G., Fonseca-Moreno L.P. 2011. Proteomics: a tool for the study of plant response to abiotic stress. Agr. Colombiana. 29 : 221-230.
 
136. Ruan H., Shen W., Ye M., Xu L. 2002. Protective effects of ni-tric oxide on salt stress-induced oxidative damage to wheat (Triticum aestivum L.) leaves. Chinese Sci. Bull. 47 : 677-681.
https://doi.org/10.1360/02tb9154
 
137. Sagi M., Fluhr R. 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141 : 336-340.
https://doi.org/10.1104/pp.106.078089
 
138. Sathiyaraj G., Srinivasan S., Kim Y.J., Lee O.R., Balusamy S.D.R., Khorolaragchaa A., Yang D.C. 2014. Acclimation of hydrogen peroxide enhances salt tol-erance by activating defense-related proteins in Panax ginseng CA. Meyer. Mol. Biol. Rep. 41 : 3761-3771.
https://doi.org/10.1007/s11033-014-3241-3
 
139. Shahid M.A., Pervez M.A., Balal R.M., Mattson N.S., Rashid A., Ahmad R., Ayyub C.M., Abbas T. 2011. Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Austr. J. Crop Sci. 5 : 500-510.
 
140. Shakirova F.M., Sakhabutdinova A.R., Bezrukova M.V., Fatkhutdinova R.A., Fatkhutdinova D.R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164 : 317-322.
https://doi.org/10.1016/S0168-9452(02)00415-6
 
141. Shana C., Liang Z. 2010. Jasmonicacid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci. 178 : 130-139.
https://doi.org/10.1016/j.plantsci.2009.11.002
 
142. Sheokand S., Bhankar V., Sawhney V. 2010. Ameliorative effect of exogenous nitric oxide on oxidative metabo-lism in NaCl treated chickpea plants. Braz. J. Plant Physiol. 22 : 81-90.
https://doi.org/10.1590/S1677-04202010000200002
 
143. Shi Q., Ding F., Wang X., Wei M. 2007. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol. Biochem. 45 : 542-550.
https://doi.org/10.1016/j.plaphy.2007.05.005
 
144. Simaei M., Khavari-Nejad R.A., Saadatmand S., Bernard F., Fahimi H. 2011. Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accu-mulation in Glycine max L. treated with NaCl salinity. J. Agric. Res. 6 : 3775-3782.
 
145. Singh D., Roy B.K. 2016. Salt stress affects mitotic activity and modulates antioxidant systems in onion roots. J. Bot. 39 : 67-76.
https://doi.org/10.1007/s40415-015-0216-0
 
146. Srivastava S.A.K., Srivastava S., Lokhande V.H., D'Souza S.F., Suprasanna P. 2015. Salt stress reveals dif-ferential antioxidant and energetics responses in gly-cophyte (Brassica juncea L.) and halophyte (Sesuvium portulacastrum L.). Environ. Sci. 
https://doi.org/10.3389/fenvs.2015.00019
 
147. Štolfa I., Špoljarić Maronić D., Žuna Pfeiffer T., Lončarić Z. 2016. Glutathione and related enzymes in re-sponse to abiotic stress. Redox State as a Central Regulator of Plant-Cell Stress Responses (Eds. Gupta D.K. et al.). Switzerland : Springer International Publishing, pp. 183-211.
https://doi.org/10.1007/978-3-319-44081-1_9
 
148. Szalai G., Kellos T., Galib G., Kocsy G. 2009.Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. Plant Growth Regul. 28 : 66-80.
https://doi.org/10.1007/s00344-008-9075-2
 
149. Takemura T., Hanagata N., Dubinsky Z., Karube I. 2002.Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dis-mutase and catalase from Bruguiera gymnorrhiza. Trees-Struct. Funct. 16 : 94-99.
https://doi.org/10.1007/s00468-001-0154-2
 
150. Talaat N.B., Shawky B.T. 2013. 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta Physiol. Plant. 35 : 729-740.
https://doi.org/10.1007/s11738-012-1113-9
 
151. Taïbi K., Taïbi F., Abderrahim L.A., Ennajah A., Belkhodja M., Mulet J.M. 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South Afr. J. Bot. 105 : 306-312.
https://doi.org/10.1016/j.sajb.2016.03.011
 
152. Tognolli M., Penel C., Greppin H., Simon P. 2003. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. 288 : 129-138.
https://doi.org/10.1016/S0378-1119(02)00465-1
 
153. Uchida A., Jagendorf A.T., Hibino T., Takabe T., Takabe T. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 163 : 515-523.
https://doi.org/10.1016/S0168-9452(02)00159-0
 
154. Vighi I.L., Benitez L.C., Amaral M.N., Moraes G.P., Auler P.A., Rodrigues G.S., Deuner S., Maia L.C., Braga E.J.B. 2017. Functional characterization of the anti-oxidant enzymes in rice plants exposed to salinity stress. Plant. 61 : 540-550.
https://doi.org/10.1007/s10535-017-0727-6
 
155. Vijayalakshmi T., Vijayakumar A.S., Kiranmai K., Nareshkumar A., Sudhakar C. 2016. Salt stress induced modulations in growth, compatible solutes and anti-oxidant enzymes response in two cultivars of saf-flower (Carthamus tinctorius L. cultivar TSF1 and cultivar SM) differing in salt tolerance. J. Plant Sci. 7 : 1802-1819.
https://doi.org/10.4236/ajps.2016.713168
 
156. Wang F.Z., Wang Q.B., Kwon S.Y., Kwak S.S., Su W.A. 2005. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Plant Physiol. 162 : 465-472.
https://doi.org/10.1016/j.jplph.2004.09.009
 
157. Wang H., Feng T., Peng X., Yan M., Tang X. 2009. Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Environ. Saf. 72 : 1354-1362.
https://doi.org/10.1016/j.ecoenv.2009.03.008
 
158. Wang Y., Li L., Cui W., Xu S., Shen W., Wang R. 2012.Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil. 351 : 107-119.
https://doi.org/10.1007/s11104-011-0936-2
 
159. Wang L.J., Li S.H. 2006. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci. 170 : 685-694.
https://doi.org/10.1016/j.plantsci.2005.09.005
 
160. Waskiewicz A., Gładysz O., Szentner K., Golinski P. 2014. Role of glutathione in abiotic stress tolerance. Oxidative Damage to Plants Antioxidant Networks and Signaling (Ed. Ahmad P.). Academic Press is an imprint of Elsevier, pp. 149-181.
https://doi.org/10.1016/B978-0-12-799963-0.00005-8
 
161. Wendehenne D., Durner J., Chen Z., Klessig D.F. 1998. Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. 47 : 651-657.
https://doi.org/10.1016/S0031-9422(97)00604-3
 
162. Wendel A. 1988.Enzymes acting against reactive oxygen. Enzymes - Tools and Target. Basel : Karger, pp. 161-167.
 
163. Widodo J.H.P., Newbigin E., Tester M., Schraudner M., Langebartels C. 2009. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars. Exp. Bot. 60 : 4089-4103.
https://doi.org/10.1093/jxb/erp243
 
164. Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Van Montagu M., Inzé D., Van Camp W. 1997. Catalase is a sink for H2O2 and is in-dispensable for stress defense in C3 plants. EMBO J. 16 : 4806-4816.
https://doi.org/10.1093/emboj/16.16.4806
 
165. Winkel B.S.J. 2008. The biosynthesis of flavonoids. In: The Science of Flavonoids (Ed. Grotewold P.E.). New York : Springer, pp. 71-95.
https://doi.org/10.1007/0-387-28822-8_3
 
166. Wu X, Zhu W, Zhang H, Ding H., Zhang H.J. 2011. Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Acta Physiol. Plant. 33 : 1199-1209.
https://doi.org/10.1007/s11738-010-0648-x
 
167. Xin Z., Browse J. 1998. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Natl. Acad. Sci. USA. 95 : 7799-7804.
https://doi.org/10.1073/pnas.95.13.7799
 
168. Xu J., Yin H., Yang L., Xie Z, Liu X. 2011. Differential salt tolerance in seedlings derived from dimorphic seeds of Atriplex centralasiatica: from physiology to molecular analysis. Planta. 233 : 859-871.
https://doi.org/10.1007/s00425-010-1347-y
 
169. Yang Y., Yang F., Li X., Shi R., Lu J. 2013. Signal regulation of proline metabolism in callus of the halophyte Ni-traria tangutorum Bobr. grown under salinity stress. Plant Cell Tiss. Org. Cult. 112 : 33-42.
https://doi.org/10.1007/s11240-012-0209-7
 
170. Yang T., Poovaiah B.W. 2002. Hydrogen peroxide homeosta-sis: activation of plant catalase by calci-um/calmodulin. Natl. Acad. Sci. USA. 99 : 4097-4102.
https://doi.org/10.1073/pnas.052564899
 
171. Yasar F., Uzal O., Yasar O. 2016. Antioxidant enzyme activities and lipidperoxidation amount of pea varieties (Pisum sativum sp. arvense L.) under salt stress. Fresenius Environ. Bull. 25 : 37-42.
 
172. Zechmann B., Mauch F., Muller M. 2008. Subcellular immunocytochemical analysis detects the highest con-centrations of glutathione in mitochondria and not in plastids. Exp. Bot. 59 : 4017-4027.
https://doi.org/10.1093/jxb/ern243
 
173. Zelinova V., Mistrík I., Pavlovkin J., Tamas L. 2013. Glutathi-one peroxidase expression and activity in barley root tip after short-term treatment with cadmiumhydrogen peroxide and t-butyl hydroperoxide. 250 : 1057-1065.
https://doi.org/10.1007/s00709-013-0481-3
 
174. Zeng H. Tang Qi, Hua X. 2010.Arabidopsis brassinosteroid mutants det2-1 and bin2-1 display altered salt tolerance. Plant Growth Regul. 29 : 44-52.
https://doi.org/10.1007/s00344-009-9111-x
 
175. Zeng C.L., Liu L., Wang B.R., Wu X.M., Zhou Y. 2011.Physiological effects of exogenous nitric oxide on Brassica juncea seedlings under NaCl stress. Plant. 55 : 345-348.
https://doi.org/10.1007/s10535-011-0051-5
 
176. Zhao M.G., Tian Q.Y., Zhang W.H. 2007. Nitric oxide syn-thase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol. 144 : 206-217.
https://doi.org/10.1104/pp.107.096842
 
177. Zhao M.L., Wang J.N., Shan W., Fan J.G., Kuang J.F., Wu K.Q., Li X.P., Chen W.X., He F.Y., Chen J.Y., Lu W.J. 2013.Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environ. 36 : 30-51.
https://doi.org/10.1111/j.1365-3040.2012.02551.x
 
178. Zhao X., Wei P., Liu Z., Yu B., Shi H. 2017. Soybean Na+/H+ antiporter GmsSOS1 enhances antioxidant enzyme activity and reduces Na+ accumulation in Arabidopsis and yeast cells under salt stress. Acta Physiol. Plant. 39 :
https://doi.org/10.1007/s11738-016-2323-3
 
179. Zheng C, Jiang D, Liu F., Dai T., Liu W., Jing Q., Cao W. 2009. Exogenous nitric oxide improves seed ger-mination in wheat against mitochondrial oxidative damage induced by high salinity. Exp. Bot. 67 : 222-227.
https://doi.org/10.1016/j.envexpbot.2009.05.002
 
180. Zhifang G., Loescher W.H. 2003. Expression of a celery man-nose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimmer. Plant Cell Environ. 26 : 275-283.
https://doi.org/10.1046/j.1365-3040.2003.00958.x