Visn. Hark. nac. agrar. univ., Ser. Biol., 2017, Issue 3 (42), с. 6-22


https://doi.org/10.35550/vbio2017.03.006




RHIZOBIUM-LEGUME SYMBIOSIS: SOME MODERN KNOWLEDGE


А. К. Glyan’ko, A. A. Ischenko, N. V. Filinova

Siberian Institute of Plant Physiology and Biochemistry
of Siberian Branch of the Russian Academy of Sciences
(Irkutsk, Russia)
E-mail: akglyanko@sifibr.irk.ru


Literature data on the role of Rhizobium-legume symbiosis (RLS) and a brief history of fundamental study of this unique biological phenomenon have been summarized. The features of root nodules formation of determinant and indeterminate types have been described. The physiological role of rhizobial Nod-factor in suppressing protective system of legume plant and the role of plant immune systems (MTI and ETI) in rhizobial infection and formation of RLS are covered. Signal systems of legume plant (Ca2+, NO synthase, NADPH oxidase) and their components (ROS, NO) and other signal molecules involved and interacting in determining of RLS are described. The necessity of studying local and systemic resistance of legume plant for rhizobial infection is emphasized.


Key words: Rhizobiaceae, legume plants (Fabaceae), Rhizobium-legume symbiosis, root nodules, Nod-factor, plant immune systems (MTI, ETI), Ca2+, H2O2, NO, salicylic acid, local and systemic resistance

 


REFERENCES


1. Akimova G.P., Sokolova M.G. 2012. Cytokinin content during early stages of legume-rhizobial symbiosis and effect of hypothermia. Russ. J. Plant Physiol. 59(5) : 694-700.
https://doi.org/10.1134/S1021443712030028
 
2. Vasil'eva GG., Mironova N.V., Glyan'ko A.K., Shepot'ko L.N. 2001. Superoxide radical generation in pea seedlings upon inoculation with nitrogen-fixing bacteria of different compatibility. Sel'skokhozyaistvennaya biologiya. 3 : 79-83.
 
3. Vorobiev V.A. 1998. Symbiotic Nitrogen Fixation and Temperature. Novosibirsk : 126 p.
 
4. Vul'f E.V., Maleyeva O.F. 1969. Directory. World Resources of Healthy Plants. Leningrad, pp. 221-222.
 
5. Glyan'ko A.K. 2014a. N.A. Provorov, N.I. Vorobiev. Genetic basis of the evolution of plant-microbial symbiosis (Ed. I.A. Tikhonovith). Bull. Ross. O-va Fiziologov Rastenii. 29 : 63-70.
 
6. Glyan'ko A.K. 2016. Defensive mechanisms of rhizobia-infected legume plants. Visn. Hark. nac. agrar. univ., Ser. Biol. 1(37) : 63-77.
 
7. Glyan'ko A.K. 2013. Initiation of nitric oxide (NO) synthesis in roots of etiolated seedlings of pea (Pisum sativum L.) under the influence of nitrogen-containing compounds. Biochemistry (Mosc.). 78(5) : 471-476. 
https://doi.org/10.1134/S0006297913050052
 
8. Glyan'ko A.K. 2014b. Significance of Nod factors Rhizobium in induction of signaling systems at formation of legume-rhizobia symbiosis. Visn. Hark. nac. agrar. univ., Ser. Biol. 3(33) : 6-14.
 
9. Glyan'ko A.K. 2015. Phytohormones and nodulation at leguminous plants. Visn. Hark. nac. agrar. univ., Ser. Biol. 3(36) : 6-19.
 
10. Glyan'ko A.K., Ischenko A.A. 2017a. Reactive oxygen and nitrogen species as possible mediators of system resistance in Fabaceae affected by rhizobial infection. Visn. Hark. nac. agrar. univ., Ser. Biol. 1(40) : 9-20.
 
11. Glyan'ko A.K., Ischenko A.A. 2017b. Immunity of a leguminous plant infected by nodular bacteria Rhizobium spp. F.: Review. Appl. Biochem.Microbiol. 53(2) : 140-148.
https://doi.org/10.1134/S0003683817020107
 
12. Glyan'ko A.K., Ischenko A.A. 2015. Cytokinin and auxin participation in nodulation process regulation in legumes. J. Stress Physiol. Biochem. 11(2) : 16-27.
 
13. Glyan'ko A.K., Ischenko A.A., Stepanov A.V. 2014. Influence of calcium and rhizobial infections (Rhizobium leguminosarum) Stepanov on the dynamics of nitric oxide (NO) content in roots of etiolated pea (Pisum sativum L.) seedlings. Appl. Biochem.Microbiol. 50(6) : 652-657.
https://doi.org/10.1134/S0003683814060040
 
14. Glyan'ko A.K., Makarova L.E., Vasil'eva G.G., Mironova N.V. 2005. Possible involvement of hydrogen peroxide and salicylic acid in the Legume-Rhizobium symbiosis. Biology Bulletin. 32(3) : 245-249.
https://doi.org/10.1007/s10525-005-0096-0
 
15. Glyan'ko A.K., Mitanova N.B., Stepanov A.V. 2012. Influence of environmental factors on the generation of nitric oxide in the roots of etiolated pea seedlings. Appl. Biochem.Microbiol. 48(1) : 83-89.
https://doi.org/10.1134/S0003683812010061
 
16. Karpets Yu.V., Kolupaev Yu.E. 2017. Functional interaction of nitric oxide with reactive oxygen species and calcium ions at development of plants adaptive responses. Visn. Hark. nac. agrar. univ., Ser. Biol. 2(41) : 6-31.
 
17. Kolupaev Yu.Ye. 2007. Calcium and stress reactions of plants. Visn. Hark. nac. agrar. univ., Ser. Biol. 1(10) : 24-41.
 
18. Kolupaev Yu.E., Karpets Yu.V., Yastreb T.O., Lugovaya A.A. 2016. Signal mediators in realization of physiological effects of stress phytohormones. Visn. Hark. nac. agrar. univ. Ser. Biol. 1(37) : 42-62.
 
19. Kots' S.Ya., Morgun V.V., Patyka V.F., Datsenko V.K., Krugova E.D., Kirichenko E.V., Mel'nikova N.N., Mikhalkiv L.M., Malichenko S.M., Mamenko P.N., Kirizii D.A.., Beregovenko S.K., Tikhonovith I.A.., Provorov N.V., Petrichenko V.F., Nadkrenicna E.V. 2010-2011, 2014. Biological nitrogen fixation (in 4 volumes). Kiev.
 
20. Kretovitch V.L. 1997. Biochemistry of assimilation of air nitrogen by plants. Moscow : 486 p.
 
21. Krugova E.D. 2009. Specific strategies of nodule and phytopathogenic bacteria at infection of plants. Fiziol. i Biokhim. Kul't. Rast. 41(1) : 3-15.
 
22. Kuznetsova I.G., Sazanova A.L., Safronova V.I., Pinaev A.G., Verkhozina A.V., Tikhomirova N.Yu., Osledkin Yu.S., Belimov A.A. 2015. Genetic diversity among microsymbionts of Lathyrus, Vicia, Oxytropis and Astragalus legume species from Baikal region. Sel'skokhozyaistvennaya biologiya. 50(3) : 345-352.
https://doi.org/10.15389/agrobiology.2015.3.345eng
 
23. Maksimov I.V., Cherepanova E.A. 2006. Pro-/antioxidant system and resistance of plants to pathogens. Uspekhi Sovrem. Biologii. 126(3) : 250-261.
 
24. Mishustin E.N. 1972. Microorganisms and Agricultural Productivity. Moscow : 343 p.
 
25. Mishustin E.N., Shil'nikova V.K. 1968. Biological Fixation of Atmospheric Nitrogen. Moscow : 531 p.
 
26. Mishustin E.N., Shil'nikova V.K. 1973. Nodule Bacteria and Inoculation Process. Moscow : 288 p.
 
27. Mitanova N.B., Glyan'ko A.K., Vasd'eva G.G. 2006. Effect of nitrogen compounds on the adhesion and penetration of nodule bacteria into root tissues and the growth of etiolated pea seedlings. Agrokhimiya. 10 : 52-55.
 
28. Molodcenkova O.O. 2001. Putative salicylic acid functions in plants. Fiziol. i Biokhim. Kul't. Rast. 33(5) : 463-473.
 
29. Provorov N.A., Vorobiev N.I. 2012. Genetic basis of the evolution of plant-microbial symbiosis. Sankt-Peterburg : 400 p.
 
30. Sidorova K.K. 1981. Genetics of Pea Mutants. Novosibirsk : 169 p.
 
31. Sidorova K.K., Sumnyi V.K. 1999. Genetics of symbiotic nitrogen fixation and the basis of selection for self-pollinating legumes (on the example of Pisum sativum L.). Genetika 35(11) : 1550-1557.
 
32. Sidorova K.K., Sumnyi V.K., Nazarov V.M. 2006. Symbiotic nitrogen fixation: genetic, breeding and environmental-agrochemical aspects. Novosibirsk : 134 p.
 
33. Sidorova K.K., Shumniy V.K., Vlasova E.Yu., Glyanenko M.N., Mishchenko T.M., Maystrenko G.G. 2010. Genetics of symbiosis and breeding of a macrosymbiont for intense nitrogen fixation by the example of pea. Vestnik VOGiS. 14(2) : 357-374.
 
34. Taechevskiy I.A. 2002. Plant Cell Signaling Systems. Moscow, pp. 103-113.
 
35. Tikhonovith I.A., Provorov N.A. 2009. Symbioses of Plants and Microorganisms. Molecular Genetics of Agrosystems of the Future. Sankt-Peterburg : 210 p.
 
36. Tsyganova A.V., Kitaeva A.B., Brewin N.J., Tsyganov V.E. 2011.Cellular mechanisms of nodule development in legume plants Sel'skokhozyaistvennaya biologiya. 3 : 34-41.
 
37. Shevchuk V.E. 1979. Legumes and soil fertility. Irkutsk : 98 c.
 
38. Shumniy V.K., Sidorova K.K., Klevenskaya I.L. 1991. Biological Nitrogen Fixation. Novosibirsk : 270 p.
 
39. Yakovleva Z.M. 1975. Bacteroids Nodule Bacteria. Novosibirsk : 171p.
 
40. Appleby C.A. 1992. The origin and functions of haemoglobin in plants. Science Progress. 76 : 365-398.
 
41. Baron C., Zambryski P.C. 1995. The plant response in patho-genesis, symbiosis, and wounding: variations on a common theme? Annu. Rev. Genet. 29 : 107-129.
https://doi.org/10.1146/annurev.ge.29.120195.000543
 
42. Barraso J.B., Valderrama R., Corpas F.J. 2013. Immmuno-localization of S-nitrosoglutathione, S-nitrosoglutathione reductase and tyrosine nitration in pea leaf organelles. Acta Physiol. Plant. 35 : 2635-2640.
https://doi.org/10.1007/s11738-013-1291-0
 
43. Baudouin E., Pieuchot L., Engler G., Pauly N., Puppo A. 2006. Nitric oxide is formed in Medicago truncutula -Sinorhizobium meliloti functional nodules. Mol. Plant-Microbe Interac. 19 : 970-975.
https://doi.org/10.1094/MPMI-19-0970
 
44. Baxter A., Mittler R., Suzuki N. 2014. ROS as key players in plant stress signaling. J. Exp. Bot. 65 : 1229-1240.
https://doi.org/10.1093/jxb/ert375
 
45. Beatly P.H., Good A.G. 2011. Future prospects for cereals that fix nitrogen. Science. 333 : 416-417.
https://doi.org/10.1126/science.1209467
 
46. Bellin D., Asai S., Delledonne M., Yoshioka H. 2013. Nitric oxide as mediator for defense responses. Mol. Plant-Microbe Interac. 26 : 271-277.
https://doi.org/10.1094/MPMI-09-12-0214-CR
 
47. Blilou I., Ocampo J., Garcia-Garrido J. 1999. Resistance of pea root to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous sali-cylic acid. J. Exp. Bot. 50 : 1663-1668.
https://doi.org/10.1093/jexbot/50.340.1663
 
48. Brewin N.J. 1991. Development of the legume root nodules. Annu. Rev. Cell Biol. 7 : 191-226.
https://doi.org/10.1146/annurev.cb.07.110191.001203
 
49. Boscari A., Del Giudice J., Ferrarini A., Venturini L., Zaffini A.L., Delledonne M., Puppo A. 2013. Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: which role for nitric oxide? Plant Physiol. 161 : 425-439.
https://doi.org/10.1104/pp.112.208538
 
50. Bueno P., Soto M.J., Rodriguez-Rosales M.P., Sanjuan J., Olivares J., Donaire J.P. 2001.Time-course of lipoxygenase, antioxidant enzyme activities and H2O2 accumulation during the early stages of Rhizo-bium-legume symbiosis. New Phytol. 152. P. 91-96.
https://doi.org/10.1046/j.0028-646x.2001.00246.x
 
51. Buffard D., Esnault R., Kondorosi A. 1996.Role of plant defense in alfalfa during symbiosis. Word J. Microbiol. Biotechnol. 12 : 175-188.
https://doi.org/10.1007/BF00364682
 
52. Charpentier M., Oldroyd G. 2010. How close are we to nitro-gen-fixing cereals? Curr. Opin. Plant Biol.13 : 556-564.
https://doi.org/10.1016/j.pbi.2010.08.003
 
53. Corpas F.J., Barroso J.B. 2014. Peroxynitrite (ONOO−) is en-dogenously produced in Arabidopsis peroxisomes and is over producer under cadmium stress. Annals Bot. 113 : 87-96.
https://doi.org/10.1093/aob/mct260
 
54. Cardenas L., Quinto C. 2008.Reactive oxygen species (ROS) as early signals in root hair cells responding to rhi-zobial nodulation factors. Plant Signal. Behav. 3 : 1101-1102.
https://doi.org/10.4161/psb.3.12.7004
 
55. Corpas F.J., del Rio L.A., Barroso J.B. 2013. Protein tyrosine nitrationin higher plants under natural and stress conditions. Front. Plant Sci. 4:29. Doi: 10.3389/fpls.2013.00029
https://doi.org/10.3389/fpls.2013.00029
 
56. Downie J.A. 2014. Calcium signals inplant immunity: a spiky issue. New Phytol. 204 : 733-735.
https://doi.org/10.1111/nph.13119
 
57. Deakin W.J., Broughton W.J. 2009. Simbiotic use of patho-genic strategies: rhizobial protein secretion systems. Nature Rev. Microbiol. 7 : 312-320.
https://doi.org/10.1038/nrmicro2091
 
58. Denarie J., Debelle F. 1996. Rhizobium lipochitooligosaccha-ride nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65 : 503-535.
https://doi.org/10.1146/annurev.bi.65.070196.002443
 
59. Djordjevic M.A., Gabriel D.W., Rolfe B.J. 1987.Rhizobium - the refined parasite avoid the host response? Annu. Rev. Phytopathol. 25 : 145-168.
https://doi.org/10.1146/annurev.py.25.090187.001045
 
60. Ehrhard D.W., Atkinson E.M., Long S.R. 1996.Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell. 85 : 673-681.
https://doi.org/10.1016/S0092-8674(00)81234-9
 
61. Ferguson B.J., Mathesius U. 2003.Signaling interactions dur-ing nodule development. J. Plant Growth Regul. 22 : 47-72.
https://doi.org/10.1007/s00344-003-0032-9
 
62. Ferguson B.J., Indrasumunar A., Hayashi S., Lin M.H., Lin Y.H., Reid D.E., Gresshoff P.M. 2010.Molecular analysis of legume nodule development and autoregulation. J. Integr. Plant Biol. 52 : 61-76.
https://doi.org/10.1111/j.1744-7909.2010.00899.x
 
63. Ferguson B.J., Mathesius U. 2014. Phytohormone regulation of legume-rhizobia interactions. J. Chem. Ecol. 40 : 770-790.
https://doi.org/10.1007/s10886-014-0472-7
 
64. Franssen H.J., Vijn I., Yang W.C., Bisseling T. 1992. Developmental aspects of the Rhizobium-legume symbiosis. Plant Mol. Biol. 19 : 89-107.
https://doi.org/10.1007/BF00015608
 
65. Fred E.B., Graul J. 1916. The effect of soluble nitrogenous salts on nodule formation.J. Amer. Soc. Agron. 8 : 316-328.
https://doi.org/10.2134/agronj1916.00021962000800050004x
 
66. Gage D.J. 2004.Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of tem-perate legumes. Microbiol. Mol. Biol. Rev. 68 : 280-300.
https://doi.org/10.1128/MMBR.68.2.280-300.2004
 
67. Gamas P., de Billy F., Truchet G. 1998. Symbiosis-specific expression of two Medicago truncatula nodulin genes, MtN1 and Mt13, in coding products gomolo-gous to plant defense proteins. Mol. Plant-Microbe Interac. 11 : 393-403.
https://doi.org/10.1094/MPMI.1998.11.5.393
 
68. Gourion B., Berrabah F., Ratet P., Stacey G. 2015.Rhizobi-um-legume symbioses: the crucial role of plant immunity. Trends Plant Sci. 20 : 186-194.
https://doi.org/10.1016/j.tplants.2014.11.008
 
69. Gough C., Cullimore J. 2011.Lipochitooligosaccharide sig-naling in endosymbiotic plant-microbe interactions. Mol. Plant-Microbe Interac. 24 : 867-878.
https://doi.org/10.1094/MPMI-01-11-0019
 
70. Granqvist A.E.U. 2012. Patterns of symbiotic calcium oscillations. John Innes Centre, Norwich : 156 p. http://ueaeprints.uea.ac.uk/42339.1/2012 GranqvistEPhD.pdf
 
71. Granqvist E., Sun J., den CampR. O., Pujic P., Hill L., Normand P., Morris R.J., Downie J.A., Geurts R., Oldroyd G.E.D. 2015.Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and nonlegumes. New Phytol. 207: 551-558.
https://doi.org/10.1111/nph.13464
 
72. Graham P.H., Vance C.P. 2003. Legumes: importance and constraints to greater use. Plant Physiol. 131 : 872-877.
https://doi.org/10.1104/pp.017004
 
73. Hayashi T., Banda M., Kouchi H., Hayashi M., Imaizumi-Anraku H. 2010. A dominant function of CCaMK in intracellular accommodation of bacterial and fungal endosymbionts. Plant J. 63 : 141-154.
https://doi.org/10.1111/j.1365-313X.2010.04228.x
 
74. Heidstra R., Bisseling T. 1996. Nod factor-induced hostre-sponses and mechanisms of Nod factor perception. New Phytol. 133 : 25-43.
https://doi.org/10.1111/j.1469-8137.1996.tb04339.x
 
75. Herouart D., Baudouin E., Frendo P., Harrison J., San-tos R., Jamet A., Van de Sype G., Touati D., Puppo A. 2002. Reactive oxygen species, nitric oxide and glutathione: key role in the establishment of the legume-Rhizobium symbiosis. Plant Physiol. Biochem. 40 : 619-624.
https://doi.org/10.1016/S0981-9428(02)01415-8
 
76. Hichri I., Bosscari A., Castella C., Rovere M., Puppo A., Brouquisse R. 2015. Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. J. Exp. Bot. 66 : 2877-2887.
https://doi.org/10.1093/jxb/erv051
 
77. Hirsch A.M. 1992. Developmental biology of legume nodulation. New Phytol. 122 : 211-237.
https://doi.org/10.1111/j.1469-8137.1992.tb04227.x
 
78. Klatt P., Lamas S. 2000. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosa-tive stress. Eur. J. Biochem. 267 : 4928-4944.
https://doi.org/10.1046/j.1432-1327.2000.01601.x
 
79. Kubienova L., Ticha T., Jahnova J., Luhova L., Mieslerova B., Pettrivalsky M. 2014. Effect of abiotic stress stimuli on S-nitrosoglutathione reductase in plants. Planta. 239 : 139-146.
https://doi.org/10.1007/s00425-013-1970-5
 
80. Long S.R. 2001. Genes and signals in the rhizobium-legume symbiosis. Plant Physiol. 125. : 69-72.
https://doi.org/10.1104/pp.125.1.69
 
81. Leon J., Lawton M.A., Raskin I. 1995. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol. 105 : 1673-1678.
https://doi.org/10.1104/pp.108.4.1673
 
82. Lohar D.P., Haridas S., Gantt J.S., VandenBosch K.A. 2007.A transient decrease in reactive oxygen species in roots leads to root hair deformation in the legume-rhizobia symbiosis. New Phytol. 173 : 39-49.
https://doi.org/10.1111/j.1469-8137.2006.01901.x
 
83. Liang Y., Cao Y., Tanaka K., Thibivilliers S., Wan J., Choi J., ho Kang C., Qiu J., Stacey G. 2013.Non legumes respond to rhizobial Nod factors by suppressing the innate immune response. Science. 341 :1384-1387.
https://doi.org/10.1126/science.1242736
 
84. Long S.R. 1996. Rhizobium symbiosis: nod factors in perspective. Plant Cell. 8 : 1885-1898.
https://doi.org/10.1105/tpc.8.10.1885
 
85. Martinez-Abarka F., Herrera-Cervera J.A., Bueno P., Sanjuan J., Bisseling T., Olivares J. 1998. Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Mol. Plant Microbe Interac. 11 : 153-155.
https://doi.org/10.1094/MPMI.1998.11.2.153
 
86. Martinez-Hidalgo P., Hirsch A.M. 2017. The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes J. 1(2) : 70-82.
https://doi.org/10.1094/PBIOMES-12-16-0019-RVW
 
87. Meyer C., Lea U.S., Provan F., Kaizer W.M., Lillo C. 2005. Is nitrate reductasea major player in the plant NO (ni-tric oxide) game? Photosynth. Res. 83 : 181-189.
https://doi.org/10.1007/s11120-004-3548-3
 
88. Meilhoc E., Boscan A., Bruand C., Puppo A., Brouquisse R. 2011.Nitric oxide in legume-rhizobium symbiosis. Plant Sci. 181 : 573-581.
https://doi.org/10.1016/j.plantsci.2011.04.007
 
89. Mostofa M.G., Fujita M., Tran L.S.P. 2015.Nitricoxide medi-ates hydrogenperoxide- and salicylic acid-inducedsalt tolerance in rice (Oriza sativa) seedlings. Plant Growth Regul. 77 : 265-277.
https://doi.org/10.1007/s10725-015-0061-y
 
90. Murray J.D. 2011. Invasion by invitation rhizobial infection in legumes. Mol. Plant-Microbe Interac. 24 : 631-639.
https://doi.org/10.1094/MPMI-08-10-0181
 
91. Ortega-Galisteo A.P., Rodriguez-Serrano M., Pazmino D.M., Gupta D.K., Sandalio L.M., Romero-Puertas M.S. 2012. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J. Exp. Bot. 63 : 2089-2103.
https://doi.org/10.1093/jxb/err414
 
92. Oldroyd G.E.D., Murray J.D., Poole P.S., Downie A. 2011. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45 : 119-144.
https://doi.org/10.1146/annurev-genet-110410-132549
 
93. Oldroyd G.E.D., Downie J.A. 2008. Coordinating nodule mor-phogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 59 : 519-546.
https://doi.org/10.1146/annurev.arplant.59.032607.092839
 
94. Park S.W., Kaimoyo E., Kumar D.,Mosher S., Klessing D.F. 2007.Methyl salicylate is a critical mobile signal for plant systemicacquired resistance. Science. 318 : 113-116.
https://doi.org/10.1126/science.1147113
 
95. Pallas J.A., Paiva N.L., Lamb C., Dixon R.A. 1996.Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by to-bacco mosaic virus. Plant J. 10 : 281-293.
https://doi.org/10.1046/j.1365-313X.1996.10020281.x
 
96. Puppo A., Pauly N., Boscari A., Mandon K., Brouquisse R. 2013. Hydrogen peroxide and nitric oxide: key regulators of the legume - Rhizobium and mycorrhizal symbioses. Antixidant Redox Signal. 18 : 2202-2219.
https://doi.org/10.1089/ars.2012.5136
 
97. Rolfe B.G., Gresshoff P.M. 1988. Genetic analysis of legume nodule initiation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39 : 297-319.
https://doi.org/10.1146/annurev.pp.39.060188.001501
 
98. Rao M.V., Paliyath G., Ormrod D.P., Murr D.P., Watkins C.B. 1997. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. Plant Physiol. 115 : 137-149.
https://doi.org/10.1104/pp.115.1.137
 
99. Rhizobiaceae. Molecular Biology of Bacteria Interacting with Plants. 2002. Sankt-Peterburg : 567 p.
 
100. Romero-Puertas M.S., Roddriguez-Serrano M., Sandal-io L.M. 2013. Protein S-nytrosylation in plants under abiot-ic stress: an overview. Front. Plant Sci. 4 : 373.
https://doi.org/10.3389/fpls.2013.00373
 
101. Ryals J.A., Neuenschwander U.H., Willits M.G., Moli-na A., Steiner H.Y., Hunt M.D. 1996. Systemic acquired resistance. Plant Cell. 8 : 1809-1819.
https://doi.org/10.1105/tpc.8.10.1809
 
102. Santos R., Herouart D., Sigaud S., Touati D., Puppo A. 2001. Oxidative burstin alfalfa- Sinorhizobium meliloti symbiotic interaction. Mol. Plant-Microbe Interac. 14 : 86-89.
https://doi.org/10.1094/MPMI.2001.14.1.86
 
103. Sagi M., Fluhr R. 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141 : 336-340.
https://doi.org/10.1104/pp.106.078089
 
104. Shah J., Zeier J. 2013.Long-distance communication and sig-nal amplification in the systemic acquired resistance. Front. Plant Sci. 4 : 30.
https://doi.org/10.3389/fpls.2013.00030
 
105. Scheler C., Durner J., Astier J. 2013. Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol. 16 : 534-539.
https://doi.org/10.1016/j.pbi.2013.06.020
 
106. Scott P., Pregelj L., Chen N., Hadler J., Djordjevic M., Gresshoff P. 2008. Pongamia pinnata: an untapped re-source for the biofuels industry of the future. Bio-Energy Res. 1 : 2-11.
https://doi.org/10.1007/s12155-008-9003-0
 
107. Shimoda Y., Nagata M., Suzuki A., Abe M., Sato S., Kato T., Tabata S., Higashi S., Uchiumi T. 2005. Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol. 46 : 99-107.
https://doi.org/10.1093/pci/pci001
 
108. Singh S., Parniske M. 2012. Activation of calcium - and cal-modulin - dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr. Opin. Plant Biol. 15: 444-453.
https://doi.org/10.1016/j.pbi.2012.04.002
 
109. Shaw S.L., Long S.R. 2003. Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiol. 131 : 976-984.
https://doi.org/10.1104/pp.005546
 
110. Spaink H.P. 1995.The molecular basis of infection and nodu-lation by rhizobia: the ins and outs of sympathogenesis. Annu. Rev. Phytopathol. 33 : 345-368.
https://doi.org/10.1146/annurev.py.33.090195.002021
 
111. Skorpil P., Broughton W.J. 2005. Molecular interaction be-tween Rhizobium and legumes. In: Molecular Basis of Symbiosis (Ed. J. Overmann). Berlin-Heidelberg: Springer-Verlag, pp.143-165.
https://doi.org/10.1007/3-540-28221-1_8
 
112. Stacey G., McAlvin C.B., Sung-Yong Kim, Olivares J., Sato M.J. 2006. Effect of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago tranculata. Plant Physiol. 141 : 1473-1481.
https://doi.org/10.1104/pp.106.080986
 
113. Timmers A.C., Soupene E., Auriac M.C., de Billy F., Vasse J., Boistard P., Truchet G. 2000. Saprophytic intra-cellular rhizobia in alfalfa nodules. Mol. Plant-Microbe Interac. 13 : 1204-1213.
https://doi.org/10.1094/MPMI.2000.13.11.1204
 
114. Vasse J., de Billy F., Truchet J. 1993. Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic in-teraction is accompanied by hypersensitive reaction. Plant J. 4 : 555-566.
https://doi.org/10.1046/j.1365-313X.1993.04030555.x
 
115. Vernooij B., Friedrich L., Morse A., Reist R., Kolditz-Jawhar R., Ward E. 1994. Salicylic acid is not the translo-cated signal responsible for inducing systemic ac-quired resistance. Plant Cell. 6 : 959-965.
https://doi.org/10.1105/tpc.6.7.959
 
116. Wang Y., Loake G.J., Chu C. 2013. Cross-talk of nitric oxide and reactive oxygen species in plant programmed cell death. Front. Plant Sci. 4 : 314.
https://doi.org/10.3389/fpls.2013.00314
 
117. Wang P., Du Y., Ren D., Song C.P. 2010. Hydrogen peroxide-mediated activation of MAP kinase 6 modulates ni-tric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell. 22 : 2981-2998.
https://doi.org/10.1105/tpc.109.072959
 
118. Yamamoto Y., Kanayama Y. 1990. Inhibition of nitrogen fixa-tion in soybean plants supplied with nitrate. II. Accumulation and properties of nitrosyllehemoglobin in nodules. Plant Cell Physiol. 31 : 207-214.
 
119. Yamamoto Y.,Watanabe I., Kanayama Y. 1990. Inhibition of nitrogen fixation in soybean plants supplied with ni-trate. 1. Nitrite accumulation and formation of nitrosylleghemoglobin in nodules. Plant Cell Physiol. 31 : 341-346.
 
120. Yu M., Lamatina L., Spoel S.H., Loake G.J. 2014. Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol. 202 : 1142-1156.
https://doi.org/10.1111/nph.12739
 
121. Yun B.W., Feechan A., Yin M., Saidi N.B., Le Bihan T., Yu M., Moore J.W., Kang J.G., Kwon E., Spoel S.H., Pallas J.A., Loake G.J. 2011. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature. 478 : 264-268.
https://doi.org/10.1038/nature10427
 
122. Zhao J., Fujita K., Sakai K. 2007. Reactive oxygen species, nitric oxide, and their interactions play different roles in Cupressus lusitanica cell death and phytoa-lexin biosynthesis. New Phytol. 175 : 215-229.
https://doi.org/10.1111/j.1469-8137.2007.02109.x
 
123. Zaninotto F., la Camera S., Polverari A., Delledonne M. 2006. Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol. 141 : 379-383.
https://doi.org/10.1104/pp.106.078857