Visn. Hark. nac. agrar. univ., Ser. Biol., 2017, Issue 2 (41), с. 68-77


https://doi.org/10.35550/vbio2017.02.068




EFFECTS OF OXALIC ACID AND SODIUM NITROPRUSSIDE ON PRODUCTIVITY AND RESISTANCE OF WINTER WHEAT TO SEPTORIA LEAF BLOTCH AND LEAF RUST INFECTIONS


І. V. Zhuk1, G. M. Lisova2, A. P. Dmitriev1

1Institute of Cell Biology and Genetic Engineering
of National Academy of Science of Ukraine
(Kyiv, Ukraine)
e-mail:
ivzhukvi@gmail.com
2Institute of Plant Protection National Academy
of Agrarian Science of Ukraine
(Kyiv, Ukraine)


The effects of the elicitor (oxalic acid) in combination with the signaling molecule NO donor (sodium nitroprusside) on wheat (Triticum aestivum) resistance to septoria leaf blotch (Septoria tritici) and leaf rust (Puccinia recondita) infections were studied. It is shown in field trials that pre-treatment of two soft wheat varieties (Poliska 90 and Stolitsna) with the combination of elicitor + signaling molecule induced their disease resistance. Cultivar-specific character of hydrogen peroxide content changes after artificial inoculation with the causative agents’ spores was revealed. Some specific features of immunomodulators effects on wheat morphogenesis were studied at different stages of disease development. We noted the enhanced stems and leaves growth, increasing the grain number in the ear and total productivity. It is concluded that the usage of immunomodulator compositions to induce systemic acquired resistance is an effective and promising method for wheat plants protection, including at the simultaneous inoculation with a few pathogenic fungi of different nutrition method.


Key words: Triticum aestivum, Septoria tritici, Puccinia reconditа, plant defense responses, oxalic acid, nitric oxide

 


REFERENCES


1. Babajanc O.V., Babajanc L.T. 2014. Fundamentals of selection and methodology for assessing wheat resistance to pathogens. Odessa : 401 p.
 
2. Dmitriev A.P. 2002. Plant immunity signaling systems. Tsitologiya i Genetika. 36 (3) : 58-68.
 
3. Dmitriev A.P. 2003. Signal Molecules for Plant Defense Responses to Biotic Stress. Russ. J. Plant Physiol. 50 (3) : 417-425.
https://doi.org/10.1023/A:1023894825462
 
4. Dmitriev A.P., Polishhuk V.P., Grodzinskij D.M. 2005. Induction of systemic resistance in plants by biogenic inducers. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (7) : 19-27.
 
5. Dmytriyev O.P., Kovbasenko R.V., Lapa S.V. 2015. Plant signaling systems and formation of plant resistance to biotic stress. Kyiv : 192 p.
 
6. Zhuk I.V., Dmytriyev O.P. 2015. Biotechnology of inducing resistance of wheat plants (Triticum aestivum L.) to biotic stress. Faktory eksperymental'noyi evolyuciyi organizmiv. 17 : 148-151.
 
7. Karpets Yu.V. 2016. Influence of no donor on content of pigments in leaves, growth and productivity of spring wheat (Triticum aestivum L.). Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (39) : 48-56.
 
8. Kolupaev Yu.Ye., Karpets Yu.V., Obozniy O.I. 2011. Plants antioxidative system: participation in cell signaling and adaptation to influence of stressors. Visn. Hark. nac. agrar. univ., Ser. Biol. 1 (22) : 6-34.
 
9. Lapa O.M., Kovbasenko R.V., Kovbasenko V.M., Dmytriyev O.P. 2011. Salicylic acid in crop production. Kyiv : 75 p.
 
10. Lapa O.M., Kovbasenko R.V., Kovbasenko V.M., Dmytriyev O.P. 2012. Jasmonic acid: functions and mechanisms of action in plants. Kyiv : 78 p.
 
11. Lykova N.A. 2009. Pre-vegetation effect. Environmental impact. St. Petersburg : 311 p.
 
12. Ozereckovskaja O.L. 1994. Induction of plant resistance by biogenic elicitors of phytopathogens. Prikladnaya Biokhimiya i Mikrobiologiya. 30 (3) : 325-339.
 
13. Poliakovskiy S.O., Dmitriev O.P. 2011. Study of priming for callose accumulation in Allium cepa during treatment with biotic inducers. Cytol. Genet. 45 (4) : 50-54.
https://doi.org/10.3103/S0095452711040086
 
14. Pradedova E.V., Isheeva O.D., Salyaev R.K. 2011.Classification of the antioxidant defense system as the ground for reasonable organization of experimental studies of the oxidative stress in plants. Russ. J. Plant Physiol. 58 (2) : 210-217.
https://doi.org/10.1134/S1021443711020166
 
15. Rjabchinskaja T.A., Bobreshova I.Ju., Harchenko G.L., Saranceva N.A. 2009. The remote aftereffect of phytoactivator treatment on subsequent reproduction of spring barley. Modern immunological studies, their role in the creation of new varieties and the intensification of crop production: Mater. scientific and practical conf.- Bol'shie Vjazemy : 173-179.
 
16. Tarchevskij I.A. 2002. Plant cell signaling systems. Moscow : 294 p.
 
17. Tjuterev S.L. 2015. Environmentally friendly inducers of plant resistance to diseases and physiological stresses. Vestn. Zashhity Rastenij. 1 : 3-12.
 
18. Fundamental Phytopathology. 2012. (Ed. D'jakov Ju.T.). Moscow : 512 p.
 
19. Dumas B., Freyssinet G., Pallett K.E. 1995. Tissue-specific expression of germin-like oxalate oxidase during development and funga1 infection of barley seed-lings. Plant Physiol. 107 : 1091-1096.
https://doi.org/10.1104/pp.107.4.1091
 
20. Flors V., Miralles M.C., Gonzalez-Bosch C., Carda M., García-Agustín P. 2003.Induction of protection against the necrotrophic pathogens Phytophthora citrophthora and Alternaria in Lycopersicon escu-lentum Mill. by a novel synthetic glycoside com-bined with amines. Planta. 216 : 929-938.
 
21. Kamilova F, Kravchenko L.V, Shaposhnikov A.I, Makarova N. 2006. Effects of the tomato pathogen F. oxysporum f. sp. radicis-lycopersici and of the biocon-trol bacterium P. fluorescens WCS365 on the com-position of organic acids and sugars in tomato root exudate. Mol. Plant-Microbe Interactions. 10 : 1121-1126.
https://doi.org/10.1094/MPMI-19-1121
 
22. Kim K. S., Min J.-Y., Dickman M.B. 2008. Oxalic acid is an elicitor of plant programmed cell death during Scle-rotinia sclerotiorum disease development. Mol. Plant-Microbe Interactions. 21 : 605-612.
https://doi.org/10.1094/MPMI-21-5-0605
 
23. Mittler R. 2002.Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 : 405-410.
https://doi.org/10.1016/S1360-1385(02)02312-9
 
24. Nakano Y., Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22 : 867-880.
 
25. Pieterse C.M., van Wees S.C., van Pelt J.A. Knoester M., Laan R., Gerrits H., Weisbeek P.J., van Loon L.C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 10 : 1571-1580.
https://doi.org/10.1105/tpc.10.9.1571
 
26. Prusky D., Yakoby N. 2003. Pathogenic fungi: leading or led by ambient pH? Mol. Plant Pathol. 4 : 509-516.
https://doi.org/10.1046/j.1364-3703.2003.00196.x
 
27. Sarkar T., Biswas P., Ghosh S.K., Ghosh S. 2014. Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute. Complexity of the interplay between necrotroph-host plant interactions. PLoS ONE. 9 : doi 10.1371/journal.pone.0107348
https://doi.org/10.1371/journal.pone.0107348
 
28. Schlicht M., Kombrink E. 2013.The role of nitric oxide in the interaction of Arabidopsis thaliana with the bio-trophic fungi, Golovinomyces orontii and Erysiphe pisi. Front. Plant Sci. 4 : doi 10.3389/fpls.2013.00351.
https://doi.org/10.3389/fpls.2013.00351
 
29. Thomma B.P., Eggermont K., Penninckx I.A., Mauch-Mani B., Vogelsang R., Cammue B.P., Broekaert W.F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidop-sis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA. 95 : 15107-15111.
https://doi.org/10.1073/pnas.95.25.15107
 
30. Ton J., Van Pelt J.A., Van Loon L.C., Pieterse C.M. 2002.Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant-Microbe Interactions. 15 : 27-34.
https://doi.org/10.1094/MPMI.2002.15.1.27
 
31. Van Breusegem F., Vranova E., Dat J., Inze D. 2001. The role of active oxygen species in plant signal transduction. Plant Sci. 161 : 405-414.
https://doi.org/10.1016/S0168-9452(01)00452-6