Visn. Hark. nac. agrar. univ., Ser. Biol., 2017, Issue 2 (41), с. 41-47


K. M. Firsova1, Yu. V. Karpets1, Yu. E. Kolupaev1, 2

1V. V. Dokuchaev Kharkiv National Agrarian University
(Kharkiv, Ukraine)


2V. V. Karazin Kharkiv National University
(Kharkiv, Ukraine)

The possible reasons of intensifying of generation of reactive oxygen species (ROS) under the treatment of isolated wheat coleoptiles with the donor of hydrogen sulfide – 100 µM of NaHS – have been studied. In 2-4 h after treatment beginning there was approximately two times increase of endogenous content of hydrogen sulfide in coleoptiles, in 24 h the amount of H2S in them did not differ from control values. The effects of intensifying of generation of superoxide anion-radical and the increase of hydrogen peroxide content caused by sodium hydrosulfide in coleoptiles were leveled by pretreatment with NADPH-oxidase inhibitor diphenyleneiodonium chloride (DPI). At the same time butanol-1 (inhibitor of dependent on phospholipase D formation of phosphatidic acid, capable to activate NADPH-oxidase) did not exert the impact on H2S-induced generation of ROS in coleoptiles. The inhibitor of NADPH-oxidase DPI prevented with the development of heat resistance of coleoptile cells caused by the influence of hydrogen sulfide donor. Positive influence of hydrogen sulfide donor on heat resistance of wheat coleoptiles was leveled also by the treatment with inhibitor of phosphatidic acid formation butanol-1, but not with its biologically not active homologue butanol-2. It is supposed that phosphatidic acid as the signaling mediator can be involved in the realization of stress-protective effects of hydrogen sulfide; however it is not involved in the activation of ROS formation, dependent on NADPH-oxidase, by hydrogen sulfide in plant cells.

Key words: Triticum aestivum, hydrogen sulfide, reactive oxygen species, NADPH-oxidase, phosphatidic acid, heat resistance



1. Glyan'ko A.K., Ischenko A.A. 2010. Structural and functional characteristics of plant NADPH oxidase: A review. Appl. Biochem. Microbiol. 46 (5) : 463-471.
2. Kolupaev Yu.E., Lugova G.A., Oboznyi A.I., Yastreb T.O., Karpets Yu.V., Musatenko L.I. 2013. Signal intermediates at the induction of antioxidant enzymes of plant cells by jasmonic acid. Reports of the National Academy of Sciences of Ukraine. 10 : 159-164.
3. Kolupaev Yu.E., Fіrsova E.N., Yastreb T.O., Shvidenko N.V. 2017a. Induction of antioxidant system and heat resistance of wheat coleoptiles by hydrogen sulfide donor: connection with reactive oxygen species formation. Visn. Hark. nac. agrar. univ., Ser. Biol. 1 (40) : 61-68.
4. Kolupaev Yu.E., Fіrsova K.M., Yastreb T.O., Lugovaya A.A. 2017b. The Participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. Appl. Biochem. Microbiol. 53 (5) : 573-579.
5. Shorning B.Yu., Smirnova E.G., Yaguzhinsky L.S., Vanyushin B.F. 2000. Necessity of superoxide production for development of etiolated wheat seedlings. Biochemistry (Mosc.). 65 (12) : 1357-1361.
6. Christou A., Filippou P., Manganaris G., Fotopoulos V. 2014. Sodium hydrosulfide induces systemic thermotoler-ance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol. 14 : 42. doi:10.1186/1471-2229-14-42
7. Fu P.N., Wang W.J., Hou L.X., Liu X. 2013. Hydrogen sulfide is involved in the chilling stress response in Vitis vi-nifera L. Acta Soc. Bot. Pol. 82 (4) : 295-302.
8. Gadalla M.M., Snyder S.H. 2010. Hydrogen sulfide as a gas-otransmitter. J. Neurochem. 113 : 14-26.
9. Guo H., Xiao T., Zhou H., Xie Y., Shen W. 2016. Hydrogen sulfide: a versatile regulator of environmental stress in plants. Acta Physiol. Plant. 38 : 16. doi 10.1007/s11738-015-2038-x
10. Hancock J.T., Whiteman M. 2014. Hydrogen sulfide and cell signaling: Team player or referee? Plant Physiol. Biochem. 78 : 37-42.
11. Jin Z.P., Shen J.J., Qiao Z.J., Yang G.D., Wang R, Pei Y.X. 2011. Hydrogen sulfide improves drought re-sistance in Arabidopsis thaliana. Biochem Biophys Res Commun. 414 : 481-486.
12. Jin Z., Xue S., Luo Y., Tian B., Fang H., Li H., Pei Y. 2013. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem. 62 : 41-46.
13. Kolupaev Yu.E., Firsova E.N., Yastreb T.O. 2017. Induction of plant cells heat resistance by hydrogen sulfide donor is mediated by H2O2 generation with participation of NADPH oxidase and superoxide dismutase. Ukr. Bicem. J. 89 (4) ^ 34-42. doi:
14. Lai D.W., Mao Y., Zhou H., Li F., Wu M., Zhang J., He Z., Cui W., Xie Y. 2014.Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablish-ment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci. 225 : 117-129.
15. Lanteri M.L., Laxalt A.M., Lamattina L. 2008. Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin-induced adventitious root formation in Cucumber. Plant Physiol. 147 : 188-198.
16. Li J., Jia H., Wang J., Cao Q., Wen Z. 2014. Hydrogen sulfide is involved in maintaining ion homeostasis via regu-lating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root. Protoplasma. 251 : 899-912.
17. Li Z.G. 2013. Hydrogen sulfide: a multifunctional gaseous molecule in plants. Russ. J. Plant Physiol. 60 : 733-740.
18. Li Z.G., Luo L.J., Sun Y.F. 2015. Signal crosstalk between nitric oxide and hydrogen sulfide may be involved in hydrogen peroxide induced thermotolerance in maize seedlings. Russ. J. Plant Physiol. 62 : 507-514.
19. Li Z.G., Luo L.J., Zhu L.P. 2014. Involvement of trehalose in hydrogen sulfide donor sodium hydrosulfide-induced the acquisition of heat tolerance in maize (Zea mays L.) seedlings. Bot. Stud. 55 : 20.
20. Li Z.G., Zhu L.P. 2015. Hydrogen sulfide donor sodium hy-drosulfide-induced accumulation of betaine is in-volved in the acquisition of heat tolerance in maize seedlings. Braz. J. Bot. 38 : 31-38.
21. Lisjak M., Teklic T., Wilson I.D., Whiteman M., Hancock J.T. 2013. Hydrogen sulfide: environmental factor or signalling molecule. Plant Cell Environ. 36 : 1607-1616.
22. Marino D., Dunand C., Puppo A., Pauly N. 2012. Aburst of plant NADPH oxidases. Trends Plant Sci. 17 : 9-15.
23. Ogasawara Y., Kaya H., Hiraoka G., Yumoto F., Kimura S., Kadota Y., Hishinuma H., Senzaki E., Yamagoe S., Nagata K., Nara M., Suzuki K., Tanokura M., Kuchitsu K. 2008.Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem. 283 : 8885-8892.
24. Sagisaka S. 1976.The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiol. 57 : 308-309.
25. Shi H., Ye T., Chan Z. 2013. Exogenous application of hydro-gen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L.). Pers.). Plant Physiol Biochem. 71 : 226-234.
26. Shi H., Ye T., Chan Z. 2014. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem. 74 : 99-107.
27. Ziogas V., Tanou G., Filippou P., Diamantidis G., Vasilakakis M., Fotopoulos V., Molassiotis A. 2013. Nitrosa-tive responses in citrus plants exposed to six abiotic stress conditions. Plant Physiol. Biochem. 68 : 118-126.