Visn. Hark. nac. agrar. univ., Ser. Biol., 2017, Issue 2 (41), с. 32-40


I. V. Kosakivska, L. V. Voytenko, K. M. Yarotska, R. V. Likhnyovskiy

M.G. Kholodny Institute of Botany
of National Academy of Sciences of Ukraine
(Kyiv, Ukraine)

Effects of a short-term heat stress (40°С, 2 hours) on the content of free and conjugated indole-3-acetic acid (IAA) in the above-ground parts and roots of Glycine max (L.) Merr varieties, differing on resistance to abiotic stressors, were studied using the high performance liquid chromatography – mass-spectrometry method. In 35-day-old soybean plants, grown from inoculated with active strain of nitrogen-fixing bacterium Bradyrhizobium japonicum 634b and non inoculated seeds, free IAA acid was shown under control conditions to be dominant and its highest content was detected in roots with nitrogen-fixing nodules of the cold-tolerant variety Podilska 416. A non-specific response to hyperthermia was a decrease in endogenous IAA content in roots and above-ground parts of the two studied varieties. A specific response to the heat stress was free IAA dominance in roots that had no nodules, of the cold-tolerant variety Podilska 416, and conjugated IAA – in those of the drought-enduring variety KiVin. It was shown that auxin homeostasis in roots with nitrogen-fixing nodules of the hyperthermia-affected cold-resistant variety Podilska 416 was sustained by conjugation processes. The most pronounced changes in IAA content under hyperthermia conditions were observed in plants of the drought-enduring variety KiVin.

Key words: Glycine max, Bradyrhizobium japonicum, indolyl-3-acetic acid, hyperthermia



1. Andreyuk K.I., Iutyns'ka G.O., Antypchuk A.F., Valagurova O.V., Kozyrycz'ka V.Ye., Ponomarenko S.P. 2001. Functioning of Soil Microbial Coenoses under Anthropogenic Loading. Kyiv : 240 c.
2. Babych A.O., Babych-Poberezhna A.A. 2011. Soybean Breeding, Production, Trade and use in the World. Kyiv : 30-31.
3. Volkogon M.V., Mamenko P.M., Kots S.Ya. Volkogon M.V., Mamenko P.M., Kots S.Ya. 2009. IAA and zeatin balance in soybean plants under seeds inoculation with various strains and mutants of Bradyrhizobium japonicum. Fizilogiya i Biokhimiya Kul't. Rastenii. 41 (5) : 409-418.
4. Glyan'ko A.K. 2015. Phytohormones and nodulation at leguminous plants. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (36) : 6-19.
5. Dimova S.B. 2013. Phytohormones are products of vital activity of microorganisms. Methods of determination. S.-g. mikrobiologiya. 18 : 159-185.
6. Drok E.N., Mamenko P.N., Omelchuk S.V., Kosakivska I.V. 2014. Features of symbiotic system and production of ethylene in varieties of Glycine max (L.) Merr., differing on resistance to abiotic stressors. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (33) : 21-28.
7. Kulaeva O.N., Kuznecov V.V. 2004. Recent advances and prospects for studying the mechanism of action of phytohormones and their participation in the signal systems of a whole plant. Vestnik RFFI. 2 : 12-26.
8. Kosakivska I.B., Yarotska K.M., Voytenko L.V., Babenko L.M. 2016.Effect of hyperthermia on cytokinin and pigments content of Glycine max (L.) Merr. varieties differed in thermotolerance. Fiziol. rast. genet. 48 (1) : 56-64.
9. Kots S.Ya. 2011. Current state of biological nitrogen fixation studies. Fizilogiya i Biokhimiya Kul't. Rastenii. 43 (3) : 212-225.
10. Kots S.Ya., Gryshchuk O.O. 2015. Phytohormones in the formation and functioning of symbiotic relationships of leguminous plants and nodule bacteria. Fiziol. rast. genet. 47 (3) : 187-206.
11. Kots S.Ja., Morgun V.V., Patyka V.F., Dacenko V.K., Krugova E.D. 2010. Biological Nitrogen Fixation. Vol. 1. Bean-Rhizobial Symbiosis. Kiev : 508 p.
12. Kots S.Ja., Morgun V.V., Patyka V.F., Petrichenko V.F., Nadkrinichnaja E.V., Kirichenko E.V. 2014. Biological Nitrogen Fixation. Vol. 4. Associative nitrogen fixation. Kiev : 410 c.
13. Leonova N.O., Dankevich L.A., Padalko S.Ph., Bobyk L.V., Dragovoz I.V. 2014. Auxins and cytokinins synthesis by various physiological groups of microorganisms in rhizosphere and philosfery of soybean. Scientific Issue Ternopil Volodymyr Hnatiuk National Pedagogical University. Series: Biology. 3 (60) : 23-34.
14. Moshynets O.V., Kosakivska I.V. 2010a. Phytosphere ecology: plant-microbial interactions. 1. Structure functional characteristic of rhizo-, endo- and phyllosphere. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (20) : 19-35.
15. Moshynets O.V., Kosakivska I.V. 2010b. Phytosphere ecology: plant-microbial interactions. 2. Phytosphere as a niche for plant-microbial interactions. functional microbial activity and its influence on plants Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (21) : 6-22.
16. Moshynets O.V., Shpylova S.P., Spiers A.J., Kosakivska I.V. 2010. The phytosphere of Brassica napus L. as a niche for Pseudomonas fluorescens SBW25. Reports of the National Academy of Sciences of Ukraine. 12 : 150-153.
17. Holmeckaja M.O., Lobanok E.V. 2001. Indolyl-3-acetic acid (IAA) production by bacteria interacting with plants. In: Tezisy Vserossiiskoi Kjnferetsii Sel'skohozjajstvennaja mikrobiologija v 19-21 vekah (St. Petersburg, June 2001). St. Petersburg : 78-79.
18. Tsavkelova E.A., Klimova S.Yu., Cherdyntseva T.A., Netrusov A.I. 2006. Microbial producers of plant growth stimulators and their practical use: A review. Applied Biochem. Microbiol. 42 (2) : 117-126.
19. Compant S., Clement C., Sessitsch A. 2009. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role in colonization, mechanisms in-volved and prospects for utilization. Soil Biol. Biochem. doi:10.1016/j.soilbio.2009.11.024.
20. Davies P.J. 2010. Plant Hormones: Biosynthesis, Signal Transduction, Action. Revised 3rd edn. Dordrecht : 816 p.
21. Enders T.A., Strader L.C. 2015. Auxin activity: past, present, and future. Amer. J. Bot. 102 (2) : 180-196.
22. Gage D.J. 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of tem-perature legumes. Microbiol. Mol. Biol. Rev. 68 : 280-300.
23. Gusta L.V., Trischuk R., Weiser C.J. 2005. Plant cold acclimation: The role of abscisic acid. J. Plant Growth Regul. 24 : 308-318.
24. Kosakivska I.V., Voytenko L.V., Likhnyovskiy R.V., Ustinova A.Y. 2014. Effect of temperature on accumulation of abscisic acid and indole-3-acetic acid in Triticum aesticum L. seedling. Genet. Plant Physiol. 4 (3-4) : 201-208.
25. Kosakivska I.V., Voytenko L.V., Likhnyovskiy R.V. 2015. Effect of temperature on Triticum aestivum L. seed-lings growth and phytohormone balance. J. Stress Physiol. Biochem. 11 (4) : 91-99.
26. Leveau J.H.J., Lindow S.E. 2005. Utilization of the plant hor-mone indole-3-acetic acid for growth by Pseudomo-nas putida strain 1290. Appl. Environ. Microbiol. 71 (5) : 2365-2371.
27. Lugtenberg B., Kamilova F. 2009.Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63 : 541-556.
28. Muday G.K., DeLong A. 2001.Polar auxin transport: control-ling where and how much. Trends Plant Sci. 6 : 535-542.
29. Ross J.J., Reid J.B. 2013. Evolution of growth-promoting plant hormones. Funct. Plant Biol. 7 : 795-805.
30. Simm S., Scharf K.-D., Jegadeesan S., Chiusano Maria Luisa, Firon N., Schleiff E. 2016. Survey of genes involved in biosynthesis, transport, and signaling of phyto-hormones with focus on Solanum lycopersicum. Bioinformatics and Biology Insights. 10 : 185-207.
31. Spaepen S., Vanderleyden J., Remans R. 2007.Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31 (4) : 425-448.
32. Sturz A.V., Christie B.R., Nowak J. 2000.Bacterial endophytes: potential role in developing sustainable sys-tems of crop production. Crit. Rev. Plant Sci. 19 : 1-30.