Вісн. Харків. нац. аграрн. ун-ту. Сер. Біологія, 2020, вип. 2 (50), с. 70-82


https://doi.org/10.35550/vbio2020.02.070




ФУНКЦІОНАЛЬНИЙ СТАН ПЛАЗМАЛЕМИ І АПОПЛАСТУ В МЕЗОФІЛІ ЯЧМЕНЮ В УМОВАХ ГІПЕРТЕРМІЇ ТА ІНФІКУВАННЯ Bipolaris sorokiniana


Л. В. Пашкевич, Л. Ф. Кабашникова, Г. Є. Савченко

Інститут біофізики і клітинної інженерії
Національної академії наук Білорусі
(Мінськ, Білорусь)
E-mail: kabashnikova@mail.ru


Досліджено функціональний стан зовнішніх мембран клітин мезофілу ячменю Hordeum vulgare L. в умовах гіпертермії і зараження грибом Bipolaris sorokiniana (Sacc.) Shoem. Отримані дані вказують на те, що в умовах зараження фітопатогенами відбувається підвищення проникності плазмалеми клітин мезофілу ячменю для вільних нуклеотидів і активація виходу іонів К+ з клітин. Короткочасна гіпертермія (вплив температури 40°С протягом 3 год) стабілізує іонний транспорт в листках ячменю при інфікуванні грибом Bipolaris sorokiniana, про що свідчить зниження проникності клітинних мембран для вільних нуклеотидів і виходу іонів калію з клітин порівняно з інфікованими листками. При цьому аналіз величини рН апопласту показав, що в результаті теплового шоку (ТШ) вже через добу відбувається зміщення рН в лужний бік, тоді як грибне зараження спричиняє підлужування апопласту тільки на 3-ю добу, а зараження на тлі короткочасної дії ТШ вже на 2-у добу призводить до слабкого підлужування апопласту. Отримані результати характеризують дію короткочасної гіпертермії на стійкість рослин ячменю до грибного патогена Bipolaris sorokiniana як пов'язану з термоіндукованими змінами функціональних характеристик плазмалеми і апопласту і вказують на важливість цих компартментів у формуванні реакцій-відповідей і адаптації рослин до дії стресорів.


Ключові слова: біомембрани, апопласт, апопластний рН, проникність мембран, іони К+, гіпертермія, Hordeum vulgare, Bipolaris sorokiniana

 


ЛІТЕРАТУРА


1. Vorobey A.V. 1999. Porphyrin sensitized photodynamic damage to biological membranes. In: Fotobiologiya i Membrannaya Biofizika (Photobiology and Membrane Biophysics). Ed. Volotovsky I.D. Minsk : Technoprint : 300-317. (In Russian).
 
2. Kozhushko N.N. 1976. The output of electrolytes as a criterion for assessing drought tolerance and the fea-tures of its use for grain crops. In: Metody otsenki ustoychivosti rasteniy k neblagopriyatnym usloviyam sredy (Methods for Assessing Plant Resistance to Adverse Environmental Conditions). Leningrad : Kolos : 33-43. (In Russian).
 
3. Mackievic V.S., Zvanarou S.M., Shyker A.A., Turovets O.A., Smolich I.I., Sokolik A.I., Demidchik V.V. 2019. Determination of NaCl-induced modifications in growth processes and induction of programmed cell death in sunflower roots. Journal of the Belarus-ian State University. Biology. 3 : 13-20. (In Russian).
https://doi.org/10.33581/2521-1722-2019-3-13-20
 
4. Polovinkina E.O., Sinitsyna Yu.V. 2010. Okislitel'nyy stress i osobennosti vozdeystviya slabykh stressorov fizicheskoy prirody na perekisnyy gomeostaz rastitel'noy kletki (Oxidative Stress and the Effects of Weak Physical Stressors on Peroxide Homeostasis of a Plant Cell). Nizhny Novgorod : 62 p. (In Russian).
 
5. Chasov A.V., Minibayeva F. V. 2014. Methodological approaches for studying apoplastic redox activity: 1. Mechanisms of peroxidase release. Russ. J. Plant Physiol. 61 (4) : 556-563.
https://doi.org/10.1134/S1021443714040049
 
6. Adams E., Shin R. 2014. Transport, signaling, and homeostasis of potassium and sodium in plants. J. In-tegr. Plant. Biol. 56 : 231-249.
https://doi.org/10.1111/jipb.12159
 
7. Almeida D.M., Oliveira M.M., Saibo N.J.M. 2017. Regulation of Na+ and K+ homeostasis in plants: to-wards improved salt stress tolerance in crop plants. Genet. Mol. Biol. 40 (1) : 326-345.
https://doi.org/10.1590/1678-4685-gmb-2016-0106
 
8. Bacon M.A., Wilkinson S., DaviesW.J. 1998. pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent. Plant. Physiol. 118 : 1507-1515.
https://doi.org/10.1104/pp.118.4.1507
 
9. Bajji M., Kinet J.M., Lutts S. 2002. Osmotic and ionic effects of NaCl on germination, early seedling growth and ion content of Atriplex halimus (Chenopodiaceae). Can. J. Bot. 80 : 297-304.
https://doi.org/10.1139/b02-008
 
10. Barrero-Sicilia C., Silvestre S., Haslam R.P., Michaelson L.V. 2017. Lipid remodelling: unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant. Sci. 263 : 194-200.
https://doi.org/10.1016/j.plantsci.2017.07.017
 
11. Baxter A., Mittler R., Suzuki N. 2014. ROS as key players in plant stress signaling. J. Exp. Bot. 65 : 1229-1240.
https://doi.org/10.1093/jxb/ert375
 
12. Behera S., Xu Z., Luoni L., Bonza C., Doccula F.G., DeMichelis M.I., Morris R.J., Schwarzlander M., Costa A. 2018. Cellular Ca2+ signals generate de-fined pH signatures in plants. Plant. Cell. 30 : 2704-2719.
https://doi.org/10.1105/tpc.18.00655
 
13. Blatt M.R., Armstrong F. 1993. K+ channels of stomatal guard cells: abscisic-acid-evoked control of the out-ward rectifier mediated by cytoplasmic pH. Planta. 191 : 330-341.
https://doi.org/10.1007/BF00195690
 
14. Cosgrove D.J. 2015. Plant expansins: diversity and in-teractions with plant cell walls // Curr.Opin. Plant. Biol. 25 : 162-172.
https://doi.org/10.1016/j.pbi.2015.05.014
 
15. Demidchik V., Straltsova D. Medvedev S.S., Pozhvanov G.A., Sokolik A., Yurin V. 2014. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 65 : 1259-1270.
https://doi.org/10.1093/jxb/eru004
 
16. Demidchik V, Tyutereva E, Voitsekhovskaja O. 2017. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. Funct. Plant Biol. 45 (2) : 28 -46.
https://doi.org/10.1071/FP16380
 
17. Demidchik V, Shabala S. 2017. Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated 'ROS-Ca2+ Hub'. Funct. Plant Biol. 45 (2) : 9-27.
https://doi.org/10.1071/FP16420
 
18. Demidchik V. 2018. ROS-activated ion channels in plants: biophysical characteristics, physiological functions and molecular nature. Int. J. Mol. Sci. 19 (4) : 1263-1281.
https://doi.org/10.3390/ijms19041263
 
19. Escriba P.V., Gonzalez-Ros J.M., Goni F.M., Kinnunen P.K., Vigh L., Sanchez-Magraner L. 2008. Mem-branes: a meeting point for lipids, proteins and ther-apies. J. Cell. Mol. Med. 12 : 829-875.
https://doi.org/10.1111/j.1582-4934.2008.00281.x
 
20. Falhof J., Pedersen J.T., Fuglsang A.T., Palmgren M. 2016. Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol. Plant. 9 : 323-337.
https://doi.org/10.1016/j.molp.2015.11.002
 
21. Felle H.H., Herrmann A., Hückelhoven R., Kogel K.H. 2005. Root-to-shoot signalling: apoplastic alkalini-zation, a general stress response and defence factor in barley (Hordeum vulgare). Protoplasma. 227 : 17-24.
https://doi.org/10.1007/s00709-005-0131-5
 
22. Felle H.H., Waller F., Molitor A., Kogel K.H. 2009.The mycorrhiza fungus Piriformos poraindica induces fast root-surface pH signaling and primes systemic alkalinization of the leaf apoplast upon powdery mildew infection. Mol. Plant. Microbe Interact. 22 : 1179-1185.
https://doi.org/10.1094/MPMI-22-9-1179
 
23. Gardiner D.M., Osborne S., Kazan K., Manners J.M. 2009. Low pH regulates the production of deoxyni-valenol by Fusarium graminearum. Microbiology. 155 : 3149-3156.
https://doi.org/10.1099/mic.0.029546-0
 
24. Geilfus C.-M. 2017. The pH of the apoplast: dynamic factor with functional impact under stress. Mol. Plant. 10 : 1371-1386.
https://doi.org/10.1016/j.molp.2017.09.018
 
25. Geilfus C.-M., Mithofer A., Ludwig-Muller J., Zorb C., Muhling K.H. 2015. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba. New Phytol. 208 : 803-816.
https://doi.org/10.1111/nph.13507
 
26. Geilfus C.-M., Muhling K.H. 2012.Transient alkaliniza-tion in the leaf apoplast of Vicia faba L. depends on NaCl stress intensity: an in situ ratio imaging study. Plant. Cell. Environ. 35 : 578-587.
https://doi.org/10.1111/j.1365-3040.2011.02437.x
 
27. Gupta P.K., Vasistha N.K., Aggarwal R., Joshi A.K. 2018. Biology of B. Sorokiniana (syn.Cochliobolus sativus) in genomics era. J. Plant. Biochem. Biotechnol. 27 : 123-138.
https://doi.org/10.1007/s13562-017-0426-6
 
28. Hedrich R., Neimanis S., Savchenko G., Felle H.H., Kaiser W.M., Heber U. 2001. Changes in apoplastic pH and membrane potential in eaves in relation to stomat al responses to CO2, malate, abscicsic acid or interruption of water supply. Planta. 213 (4) : 594-601.
https://doi.org/10.1007/s004250100524
 
29. Hohmann S. 2003. Osmotic stress signaling and os-moadaptation in yeasts. Microbiol. Mol. Biol. 66 : 300-372.
https://doi.org/10.1128/MMBR.66.2.300-372.2002
 
30. Kant S., Kafkafi U. 2002. Potassium and abiotic stresses in plants. In: Potassium for Sustainable Crop Production. Eds. Pasricha N.S., Bansal S.K. India : Gurgaon : 233-251.
 
31. Karuppanapandian T., Geilfus C.-M., Muhling K.H, Novak O., Gloser V. 2017. Early changes of the pH of the apoplast are different in leaves, stem and roots of Vicia faba L. under declining water availability. Plant Sci. 255 : 51-58.
https://doi.org/10.1016/j.plantsci.2016.11.010
 
32. Kesten C., Gamez-Arjona F.M., Menna A., Scholl S., Dora S., Huerta A.I., Huang H.Y., Tintor N., Ki-noshita T., Rep M., Krebs M., Schumacher K., Sanchez-Rodriguez C. 2019. Pathogen‐induced pH changes regulate the growth‐defense balance in plants. EMBO J. 38 : e101822.
https://doi.org/10.15252/embj.2019101822
 
33. Kinoshita T., Nishimura M., Shimazaki K.I. 1995. Cy-tosolic concentration of Ca2+-regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant. Cell. 7 : 1333-1342.
https://doi.org/10.1105/tpc.7.8.1333
 
34. Lee B., Zhu J.K. 2010. Phenotypic analysis of Arabidopsis mutants: electrolyte leakage after freezing stress. Cold Spring Harbour Protocols.
https://doi.org/10.1101/pdb.prot4970
 
35. Masachis S., Segorbe D., Turra D., Leon‐Ruiz M., Fürst U., El Ghalid M., Leonard G., Lopez‐Berges M.S., Richards T.A., Felix G. 2016. A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nature Microbiol. 1 : e16043.
https://doi.org/10.1038/nmicrobiol.2016.73
 
36. Niu Y., Xiang Y. 2018. An overview of biomembrane functions in plant responses to high-temperature stress. Front Plant Sci. 9 : 915.
https://doi.org/10.3389/fpls.2018.00915
 
37. Noctor G., Reichheld J.P., Foyer C.H. 2017. ROS-related redox regulation and signaling in plants. Seminars in Cell and Developmental Biology. 78 : 45-49.
 
38. Oja V., Savchenko G., Jakob B., Heber U. 1999. Changes in apoplastic pH and buffer capacities of apoplastic and cytoplasmic cell compartments in leaves. Planta. 209 : 239-249.
https://doi.org/10.1007/s004250050628
 
39. Penfield S. 2008. Temperature perception and signal transduction in plants. New Phytol. 179 : 615-628.
https://doi.org/10.1111/j.1469-8137.2008.02478.x
 
40. Ruelland E., Zachowski A. 2010. How plants sense temperature. Environ. Exp. Bot. 69 : 225-232.
https://doi.org/10.1016/j.envexpbot.2010.05.011
 
41. Sadura I., Libik-Koniecznya M., Jurczykb B., Gruszkac D., Janeczkoa A. 2020. Plasma membrane ATPase and the aquaporin HvPIP1 in barley brassinosteroid mutants acclimated to high and low temperature. J. Plant. Physiol. 244 : e153090.
https://doi.org/10.1016/j.jplph.2019.153090
 
42. Saidi Y., Peter P., Finka A., Cicekli C., Vigh L., Goloubinoff P. 2010. Membrane lipid composition affects plant heat sensing and modulates Ca2C-dependent heat shock response. Plant Signal. Behav. 5 : 1530-1533.
https://doi.org/10.4161/psb.5.12.13163
 
43. Sattelmacher B., Horst W.J. 2007. The apoplast of high-er plants: compartment of storage, transport, and re-actions. Hannover : 455 p.
https://doi.org/10.1007/978-1-4020-5843-1
 
44. Sun J., Dai S., Wang R., Chen S., Li N., Zhou X., Lu C., Shen X., Zheng X., Hu Z. 2009. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol. 29 : 1175-1186.
https://doi.org/10.1093/treephys/tpp048
 
45. Sze H., Chanroj S. 2018. Plant endomembrane dynam-ics: studies of K+/H+ antiporters provide insights on the effects of ph and ion homeostasis. Plant Physiol. 177 : 875-895.
https://doi.org/10.1104/pp.18.00142
 
46. Todaka D., Zhao Y., Yoshida T., Kudo M., Kidokoro S., Mizoi J., Kodaira K.S., Takebayashi Y., Kojima M., Sakakibara H. 2017. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant. J. 90 : 61-78.
https://doi.org/10.1111/tpj.13468
 
47. Vigh L., Nakamoto H., Landry J., Gomez-Munoz A., Harwood J. L., Horvath I. 2007. Membrane regulation of the stress response from prokaryotic models to mammalian cells. Ann. N.Y. Acad. Sci. 1113 : 40-51.
https://doi.org/10.1196/annals.1391.027
 
48. Wang Y., Wang Y. 2018. Trick or Treat: Microbial Pathogens Evolved Apoplastic Effectors Modulating Plant Susceptibility to Infection. Mol. Plant. Microbe Interact. 31 : 6-12.
https://doi.org/10.1094/MPMI-07-17-0177-FI
 
49. Wilkinson S., Davies W.J. 2010. Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ. 33 : 510-525.
https://doi.org/10.1111/j.1365-3040.2009.02052.x
 
50. Zhang H.Y., Zhang Y., Wang Y., Li M., Zhang J., Duan L., Zhang M., Li Z. 2016. Increased abscisic acid levels in transgenic maize overexpressing At-LOS5mediated root ion fluxes and leaf water status under salt stress. J. Exp. Bot. 67 : 1339-1355.
https://doi.org/10.1093/jxb/erv528