Вісн. Харків. нац. аграрн. ун-ту. Сер. Біологія, 2020, вип. 2 (50), с. 6-34


https://doi.org/10.35550/vbio2020.02.006




РОЗЧИННІ ВУГЛЕВОДИ І ХОЛОДОВА АКЛІМАЦІЯ РОСЛИН


Н. О. Білявська, О. М. Федюк, О. К. Золотарьова

Інститут ботаніки ім. М.Г. Холодного
Національної академії наук України
(Київ, Україна)
E-mail: nbel2@ukr.net


Розчинні вуглеводи, які є продуктами фотосинтезу, депо для короткочасного запасання енергії, джерелами вуглецю і компонентами для синтезу оліго- і полісахаридів, беруть участь в ключових фізіологічних, біохімічних і молекулярно-генетичних процесах, що забезпечують ріст, розвиток, розмноження і захист від несприятливих біотичних і абіотичних чинників, серед яких важливе місце посідає холодовий стрес. Хоча глобальна температура Землі поступово підвищується, заморозки і випадки похолодання стають частішими в усьому світі. В огляді обговорюється вплив холоду на всіх рівнях організації рослини, в результаті якого виявляються функції розчинних вуглеводів як кріопротекторів, осмолітів, антиоксидантів і сигнальних молекул. У холодовій аклімації рослин бере участь весь комплекс компонентів мереж, що забезпечують метаболізм розчинних вуглеводів, включаючи ферменти, транспортери, гени, транскрипційні фактори і т. ін. Методами геноміки та генної інженерії, що дозволили трансформувати певні гени, змінюючи вуглеводний обмін, транспорт вуглеводів і/або їх cигналінг, були досягнуті певні успіхи в галузі створення нових холодостійких сортів рослин, що може служити важливою передумовою для підвищення урожайності сільськогосподарських рослин в зонах з нестабільними погодними умовами.


Ключові слова: розчинні вуглеводи, рослина, холодовий стрес, аклімація

 


ЛІТЕРАТУРА


1. Antipina O. V., Astakhova, N. V., Popov, V. N., & Selivanov, A. A. 2015. Change in the ultrastructural organization of chloroplasts of tobacco plants and Arabidopsis in connection with the formation of resistance to hypothermia. In: New and Non-Traditional Plants and Prospects for Their Use : 188-192. (In Russian).
 
2. Astakhova N.V., Popov V.N., Selivanov A.A., Burakhanova E.A., Alieva G.P., Moshkov I.E. 2014. Reorganization of chloroplast ultrastructure associated with low-temperature hardening of arabidopsis plants. Russ. J. Plant Physiol. 61 (6) : 744-750.
https://doi.org/10.1134/S102144371406003X
 
3. Burmistrova N.A., Gomaa A., Raldugina G.N. 2011. Content of soluble sugars and cold tolerance of rapeseed plants with the integrated osmyb4 gene. In: Proc. int. conf. Structural and Functional Deviations from the Normal Growth and Development of Plants under the Influence of Environmental Factors : 54-59. (In Russian).
 
4. Deryabin A.N., Astakhova N.V., Alieva G.P., Trunova T.I. 2018. Dependence of the cold resistance of potato plants from the characteristics of carbohydrate metabolism. In: Proc. int. conf. Structural and Functional Deviations from the Normal Growth and Development of Plants under the Influence of Environmental Factors : 259-263. (In Russian).
https://doi.org/10.31255/978-5-94797-319-8-259-263
 
5. Karelina T.V., Novitskaya L.L. 2011. The effect of various concentrations of sucrose and its cleavage products on the morphogenesis of conductive tissues of aspen, alder and birch. In: Proc. int. conf. Structural and Functional Deviations from the Normal Growth and Development of Plants under the Influence of Environmental Factors : 107-112. (In Russian).
 
6. Karelina T.V., Novitskaya L.L., Galibina N.A. 2011. The effect of exogenous sucrose on the content of mono- and disaccharides in the tissues of the trunk of a birch, alder and aspen in preparation for dormancy. In: Proc. int. conf. Structural and Functional Deviations from the Normal Growth and Development of Plants under the Influence of Environmental Factors : 112-116. (In Russian).
 
7. Kolupaev Yu.E., Gorelova E.I., Yastreb T.O. 2018. Mechanisms of plant adaptation to hypothermia: the role of the antioxidant system. Visn. Hark. nac. agrar. univ., Ser. Biol. 1 (43) : 6-33. (In Russian).
https://doi.org/10.35550/vbio2018.01.006
 
8. Kondratyeva V.V., Semenova, M.V., Voronkova T.V., Shelepova O.V., Danilina N.N. 2009. Physiological and biochemical changes in the underground shoots of white cinquefoil (Potentilla alba L.) and snow-white snowdrop (Galanthus nivalis L.) during wintering under introduction. Plant Varieties Studying and Protection. 2 (10) : 93-98. (In Russian).
https://doi.org/10.21498/2518-1017.2(10).2009.59534
 
9. Kopylova N.A. 2011. Ultrastructural and biochemical changes in the plant cell under the influence of low temperature stress. Vesci Nat. Acad. Navuk Belarusі. Ser Biyal. Navuk. 2: 106-113. (In Russian).
 
10. Major P.S., Kozina G.Ya., Slyvka L.V. 2010. The soluble sugar content in the winter wheat plants during the autumn-winter period. Fiziol. biochim. cult. rast. 42 (2) : 174-183. (In Ukrainian).
 
11. Naraikina N.V., Astakhova N.V., Deryabin A.N., Sinkevich M.S., Trunova T.I. 2018. Adaptive alterations in the ultrastructure of chloroplasts and the contents of pigments and sugars under low temperature hardening of potato plants: role of Δ12 acyl-lipid desaturase. Biol. Bull. Russ. Acad. Sci. 45 : 549-556.
https://doi.org/10.1134/S1062359018060092
 
12. Novitskaya L.L., Galibina N.A. 2011. Transport and reserve forms of sugar in birch saggy (Betula pendula roth). In: Proc. int. conf. Structural and Functional Deviations from the Normal Growth and Development of Plants under the Influence of Environmental Factors : 230-236. (In Russian).
 
13. Plyusnina S.N., Malyshev R.V. 2011. The formation of ice in the needles and buds of Siberian spruce under experimental conditions. In: Biologicheskiy monitoring prirodno-tekhnogennykh sistem (Biological Monitoring of Natural-Technogenic Systems) : 65-67. (In Russian).
 
14. Tarelkina T.V., Novitskaya L.L., Galibina N.A. 2015. The content of soluble sugars in the tissues of the trunk of a birch, alder and aspen in an experiment with the introduction of exogenous sucrose. Trudy Karel'skogo Nauchnogo Tsentra RAN. 12 : 135-142. (In Russian).
https://doi.org/10.17076/eb215
 
15. Trunova T.I. 2007. Rasteniye i nizkotemperaturnyy stress (Plant and Low Temperature Stress): The 64th Timiryazev memorial lecture. Moscow : 54 p. (In Russian).
 
16. Fedyuk O.M., Bilyavska N.O. 2015. Ultrastructural serpentine leaflet Galanthus nivalis L. during vegetation for the mind of hypothermia. Visn. Hark. nac. agrar. univ., Ser. Biology. 2 (35) : 58-63. (In Ukrainian).
 
17. Fediuk O.M., Bilyavska N.O., Zolotareva O.K. Ultrastructural peculiarities and state of the photosynthetic apparatus in leaves of Galanthus nivalis (Amaryllidaceae) in its spring stage of ontogenesis. Ukr. Bot. J. 2017. 74 (5) : 475-487. (In Ukrainian).
https://doi.org/10.15407/ukrbotj74.05.475
 
18. Abelenda J.A., Bergonzi S., Oortwijn M., Sonnewald S., Du M., Visser R.G.F., Sonnewald U. 2019. Source-sink regulation is mediated by interaction of an ft homolog with a sweet protein in potato. Curr. Biol. 29 : 1178-1186.
https://doi.org/10.1016/j.cub.2019.02.018
 
19. Achard P., Gong F., Cheminant S., Alioua M., Hedden P., Genschik P. 2008. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell. 20 : 2117-2129.
https://doi.org/10.1105/tpc.108.058941
 
20. Ajito S., Iwase, H., Takata, S. I., Hirai, M. 2018. Sugar-mediated stabilization of protein against chemical or thermal denaturation. J. Phys. Chem. B. 122 (37) : 8685-8697.
https://doi.org/10.1021/acs.jpcb.8b06572
 
21. Antunes W.C., de Menezes Daloso D., Pinheiro D.P., Williams T.C.R., Loureiro M.E. 2017. Guard cell-specific down-regulation of the sucrose transporter SUT1 leads to improved water use efficiency and reveals the interplay between carbohydrate metabolism and K+ accumulation in the regulation of stomatal opening. Environ. Exp. Bot. 135 : 73-85.
https://doi.org/10.1016/j.envexpbot.2016.12.004
 
22. Barrero-Gil J., Salinas J. 2018. Gene regulatory networks mediating cold acclimation: The CBF pathway. In: Survival Strategies in Extreme Cold and Desiccation : 3-22.
https://doi.org/10.1007/978-981-13-1244-1_1
 
23. Barton, K. A., Wozny, M. R., Mathur, N., Jaipargas, E. A., Mathur, J. 2018. Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells. J. Cell Sci. 131 : jcs202275.
https://doi.org/10.1242/jcs.202275
 
24. Bello B., Zhang X., Liu C., Yang Z., Yang Z., Wang Q., Li F. 2014. Cloning of Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 gene (GhSnRK2) and its overexpression in transgenic Arabidopsis escalates drought and low temperature tolerance. PLoS One. 9 : 11.
https://doi.org/10.1371/journal.pone.0112269
 
25. Benina M., Obata T., Mehterov N., Ivanov I., Petrov V., Toneva V., Gechev. 2013. Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla and Arabidopsis thaliana exposed to low temperature. Front. Plant Sci. 4 : 499. 
https://doi.org/10.3389/fpls.2013.00499
 
26. Bhandari K. 2018. Chilling stress: how it affects the plants and its alleviation strategies. Int. J. Pharm. Sci. Res. 9 (6) : 2197-2200.
 
27. Bilyavska N.O., Fediuk O.M., Zolotareva E.K. 2019. Chloroplasts of cold-tolerant plants. Plant Science Today. 6 (4) : 407-411.
https://doi.org/10.14719/pst.2019.6.4.584
 
28. Borovik O.A., Pomortsev A.V., Korsukova A.V., Polyakova E.A., Fomina E. A., Zabanova N.S., Grabelnych O.I. 2019. Effect of cold acclimation and deacclimation on the content of soluble carbohydrates and dehydrins in the leaves of winter wheat. J. Stress Physiol. Biochem. 15 (2) : 62-67.
 
29. Bouchnak I., Brugière S., Moye L., Le Gall S., Salvi D., Kuntz M., Rolland N. 2019. Unraveling hidden components of the chloroplast envelope proteome: opportunities and limits of better MS sensitivity. Mol. Cell. Proteomics. 18 (7) : 1285-1306.
https://doi.org/10.1074/mcp.RA118.000988
 
30. Bredow M., Walker V. K. 2017. Ice-binding proteins in plants Front. Plant Sci. 8 : 2153. 
https://doi.org/10.3389/fpls.2017.02153
 
31. Buy D.D., Demkovych A.E., Pirko Y.V., Blume Y.B. 2019. Analysis of α-Tubulin Gene Expression During Cold Acclimation of Winter and Spring Soft Wheat. Cytol. Genet. 53 (1), 23-33.
https://doi.org/10.3103/S0095452719010067
 
32. Byun M.Y., Cui L.H., Lee A., Kim W.T., Lee H. 2018. Identification of rice genes associated with enhanced cold tolerance by comparative transcriptome analysis with two transgenic rice plants overexpressing DaCBF4 or DaCBF7, isolated from antarctic flowering plant Deschampsia antarctica. Front. Plant Sci. 3 : 9. 
https://doi.org/10.3389/fpls.2018.00601
 
33. Chen C., Yuan Y., Zhang C., Li H., Ma F., Li M. 2017. Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit. Plant Sci. 255 : 40-50.
https://doi.org/10.1016/j.plantsci.2016.11.011
 
34. Chen L.J., Xiang H.Z., Miao Y., Zhang L., Guo Z.F., Zhao X.H., Lin J.W., Li T.L. 2014. An overview of cold resistance in plants. J. Agron. Crop Sci. 200 : 237-245.
https://doi.org/10.1111/jac.12082
 
35. Chen, Q., Yang, G. 2020. Signal Function Studies of ROS, Especially RBOH-dependent ROS, in plant growth, development and environmental stress. J. Plant Growth Regul. 39 : 157-171.
https://doi.org/10.1007/s00344-019-09971-4
 
36. Chinnusamy V., Zhu J., Zhu J. K. 2007. Cold stress regulation of gene expression in plants. Trends Plant Sci. 12 : 444-451.
https://doi.org/10.1016/j.tplants.2007.07.002
 
37. Cho L. H., Pasriga R., Yoon J., Jeon J.S., An G. 2018. Roles of sugars in controlling flowering time. J. Plant Biol. 61 (3) : 121-130.
https://doi.org/10.1007/s12374-018-0081-z
 
38. Comtet J., Turgeon R., Stroock A.D. 2017. Phloem loading through plasmodesmata: a biophysical analysis. Plant Physiol. 175 : 904-915.
https://doi.org/10.1104/pp.16.01041
 

39. Crepin N., Rolland F. 2019. SnRK1 activation, signaling, and networking for energy homeostasis. Curr. Opin. Plant Biol. 51 : 29-36.

https://doi.org/10.1016/j.pbi.2019.03.006

 
40. Delfosse K., Wozny M.R., Barton K.A., Mathur N., Griffiths N., Mathur J. 2018. Plastid envelope-localized proteins exhibit a stochastic spatiotemporal relationship to stromules. Front Plant Sci., 9 : 754.
https://doi.org/10.3389/fpls.2018.00754
 
41. Deryabin A., Berdichevets I., Trunova T. 2018. Constitutively expressing of the suc2 gene of Saccharomyces cerevisiae encoding of invertase apoplastic localization in potato plants results in multiple physiological and biochemical changes associated with low temperature resistance. J. Plant Chem. Ecophysiol. 3 (1) : 1-6.
https://doi.org/10.21859/focsci-03021404
 
42. Deryabin A.N., Trunova T.I. 2016. The physiological and biochemical mechanisms providing the increased constitutive cold resistance in the potato plants, expressing the yeast SUC2 gene encoding apoplastic invertase. J. Stress Physiol. Biochem. 12 (2) : 39-52.
 
43. Ding Y., Shi Y., Yang S. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 222 (4) : 1690-1704.
https://doi.org/10.1111/nph.15696
 
44. Doidy J., Vidal U., Lemoine R. 2019. Sugar transporters in Fabaceae, featuring SUT MST and SWEET families of the model plant Medicago truncatula and the agricultural crop Pisum sativum. PloS one. 14 (9) : e0223173. 
https://doi.org/10.1371/journal.pone.0223173
 
45. Dong S., Beckles D.M. 2019. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. J. Plant Physiol. 234: 80-93.
https://doi.org/10.1016/j.jplph.2019.01.007
 
46. ElSayed A.I., Rafudeen M.S., Golldack D. 2014. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol. 16 : 1-8.
https://doi.org/10.1111/plb.12053
 
47. Fediuk O.M., Bilyavska N.O., Zolotareva E. K. 2018. Effects of soil early-spring temperature on the morphometric parameters of mitochondria in Galanthus nivalis L. Plant Science Today. 5 (4) : 149-154.
https://doi.org/10.14719/pst.2018.5.4.405
 
48. Fediuk O.M., Bilyavska N.O., Zolotareva O.K. 2017. Effects of sucrose on structure and functioning of photosynthetic apparatus of Galanthus nivalis L. leaves exposed to chilling stress. Ann. Romanian Soc. Cell Biol. 21 : 43-51.
https://doi.org/10.2139/ssrn.3504306
 
49. Fernández-Marín B., Gulías J., Figuero C. M., Iñiguez C., Clemente-Moreno M. J., Nunes-Nesi A., Gago J. 2020. How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. Plant J. 101 (4) : 979-1000.
https://doi.org/10.1111/tpj.14694
 
50. Figueroa C.M., Lunn J.E. 2016. A tale of two sugars: Trehalose 6-phosphate and sucrose. Plant Physiol. 172 : 7-27.
https://doi.org/10.1104/pp.16.00417
 
51. Fki L., Bouaziz N., Chkir O., Benjemaa-Masmoudi R., Rival A., Swennen R., Panis B. 2013. Cold hardening and sucrose treatment improve cryopreservation of date palm meristems. Biol. Plant. 57 (2) : 375-379.
https://doi.org/10.1007/s10535-012-0284-y
 
52. Foyer C.H., Shigeoka S. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 155 : 93-100.
https://doi.org/10.1104/pp.110.166181
 
53. Fu J., Miao Y., Shao L., Hu T., Yang P. 2016. De novo transcriptome sequencing and gene expression profiling of Elymus nutans under cold stress. BMC Genomics. 17 (1) : 870. 
https://doi.org/10.1186/s12864-016-3222-0
 
54. Fürtauer L., Weiszmann J., Weckwerth W., Nägele T. 2019. Dynamics of Plant Metabolism during Cold Acclimation. Int. J. Mol. Sci.. 20 (21) : 5411. 
https://doi.org/10.3390/ijms20215411
 
55. Gangl R., Tenhaken R. 2016. Raffinose family oligosaccharides act as galactose stores in seeds and are required for rapid germination of Arabidopsis in the dark. Front. Plant Sci. 7 : 1115. 
https://doi.org/10.3389/fpls.2016.01115
 
56. Gangola M.P., Ramadoss B.R. 2018. Sugars Play a Critical Role in Abiotic Stress Tolerance in Plants. In: Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants. Academic Press : 17-38.
https://doi.org/10.1016/B978-0-12-813066-7.00002-4
 
57. Giełwanowska I., Pastorczyk M., Kellmann-Sopyła W., Gorniak D., Gorecki R. 2015. Morphological and ultrastructural changes of organelles in leaf mesophyll cells of the arctic and antarctic plants of poaceae family under cold influence. Arctic Antarct Alp Res. 47 (1) : 17-25.
https://doi.org/10.1657/AAAR0014-019
 
58. Giełwanowska I., Pastorczyk M., Lisowska M., Węgrzyn M., Górecki R. 2014. Cold stress effects on organelle ultrastructure in polar Caryophyllaceae species. Polish Polar Research. 35 (4) : 627-46.
https://doi.org/10.2478/popore-2014-0029
 
59. Guo X.Y., Liu D.F., Chong K. 2018. Cold signaling in plants: Insights into mechanisms and regulation. J. Integr. Plant Biol. 60 : 745-756.
https://doi.org/10.1111/jipb.12706
 
60. Guo X., Zhang L., Dong G., Xu Z., Li G., Liu N., Zhu J. 2019. A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco (Nicotiana tabacum). Plant Sci. 289 : 110246.
https://doi.org/10.1016/j.plantsci.2019.110246
 
61. Han, Q., Qi, J., Hao, G., Zhang, C., Wang, C., Dirk, L. M., Zhao, T. 2020. ZmDREB1A regulates RAFFINOSE SYNTHASE controlling raffinose accumulation and plant chilling stress tolerance in maize. Plant Cell Physiol. 61 (2) : 331-341.
https://doi.org/10.1093/pcp/pcz200
 
62. Hanson M.R., Hines K.M. 2018. Stromules: Probing formation and function. Plant Physiol. 176 : 128-137.
https://doi.org/10.1104/pp.17.01287
 
63. Hayashi K., Matsunaga S. 2019. Heat and chilling stress induce nucleolus morphological changes. J. Plant Res. 132 (3) : 395-403.
https://doi.org/10.1007/s10265-019-01096-9
 
64. Hei S., Liu Z., Huang A., She X. 2018. The regulator of G-protein signalling protein mediates D-glucose-induced stomatal closure via triggering hydrogen peroxide and nitric oxide production in Arabidopsis. Funct. Plant Biol. 45 (5) : 509-518.
https://doi.org/10.1071/FP17180
 
65. Hellmann H. A., Smeekens S. 2014. Sugar sensing and signaling in plants. Front. Plant Sci. 5 : 113. 
https://doi.org/10.3389/fpls.2014.00113
 
66. Hellmers H., Warrington I. 2018. Temperature and plant productivity. In: Handbook of Agricultural Productivity. CRC Press : 11-22.
 
67. Herath V. 2018. Transcription factors based genetic engineering for abiotic tolerance in crops. In: Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants. Academic Press : 1-15.
https://doi.org/10.1016/B978-0-12-813066-7.00001-2
 
68. Hoermiller I. I., Naegele T., Augusti H., Stut S., Weckwerth W., Heyer A.G. 2017. Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana. Plant Cell Environ. 40 (5) : 602-610.
https://doi.org/10.1111/pce.12836
 
69. Huh Y.S., Lee J.K., Nam S.Y., Hong E.Y., Paek K.Y., Son S.W. 2016. Effects of altering medium strength and sucrose concentration on in vitro germination and seedling growth of Cypripedium macranthos Sw. J. Plant Biotechnol. 43 (1) : 132-137.
https://doi.org/10.5010/JPB.2016.43.1.132
 
70. Hurry V. 2017. Metabolic reprogramming in response to cold stress is like real estate, it's all about location. Plant Cell Environ. 40 : 599-601.
https://doi.org/10.1111/pce.12923
 
71. Ishikawa M., Yamazaki H., Kishimoto T., Murakawa H., Stait-Gardner T., Kuchitsu K., Price W.S. 2018. Ice nucleation activity in plants: the distribution, characterization, and their roles in cold hardiness mechanisms. In: Survival Strategies in Extreme Cold and Desiccation. : 99-115.
https://doi.org/10.1007/978-981-13-1244-1_6
 
72. Ivamoto S.T., Reis O Júnior., Domingues D.S., dos Santos T.B., de Oliveira F.F., Pot D. 2017. Transcriptome analysis of leaves, flowers and fruits perisperm of Coffea arabica L. reveals the differential expression of genes involved in raffinose biosynthesis. PLoS ONE. 12 : e0169595.
https://doi.org/10.1371/journal.pone.0169595
 
73. Jewell M.C., Campbell B.C., Godwin I.D. 2010. Transgenic plants for abiotic stress resistance. In: Transgenic Crop Plants. Springer-Verlag : 67-132.
https://doi.org/10.1007/978-3-642-04812-8_2
 
74. Jia W., Zhang L., Wu D., Liu S., Gong X., Cui Z., Cui N., Cao H., Rao L., Wang C. 2015. Sucrose transporter AtSUC9 mediated by a low sucrose level is involved in Arabidopsis abiotic stress resistance by regulating sucrose distribution and ABA accumulation. Plant Cell Physiol. 56: 1574-1587.
https://doi.org/10.1093/pcp/pcv082
 
75. John R., Anjum N.A., Sopory S.K., Akram N.A., Ashraf M. 2016. Some key physiological and molecular processes of cold acclimation. Biol. Plant. 60 (4) : 603-618.
https://doi.org/10.1007/s10535-016-0648-9
 
76. Kakumanu A., Ambavaram M.M.R., Klumas C., Krishnan A., Batlang U. 2012. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol. 160 : 846-867.
https://doi.org/10.1104/pp.112.200444
 
77. Keunen E.L.S., Peshev D., Vangronsveld J., Van Den Ende W.I.M., Cuypers A.N.N. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 36 (7) : 1242-1255.
https://doi.org/10.1111/pce.12061
 
78. Kimura S., Hunter K., Vaahtera L., Tra H. C., Citteri¬co M., Vaattovaara A., Wilkens M.M.T. 2020. CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in Arabidopsis. Plant Cell. 32 (4) : 1063-1080.
https://doi.org/10.1105/tpc.19.00525
 
79. Koleva D., Stefanova M., Dragolova D., Kapchina-Toteva V., Chaneva G. 2015. Structural and functional markers for stress response in three Hypericum species after cryopreservation. Oxidation Communications. 38 (4A) : 2045-2057.
 
80. Koleva, D., Ganeva, T., Stefanova M. 2012. Effect of cryoprotectants sucrose and ABA on chloroplasts structure in regenerated after cryopreservation Orthosiphon stamineus Benth. plants. J. Pharm. Res. 5 (8) : 4172-4174.
 
81. Krasavina M.S., Burmistrova N.A., Raldugina, G.N. 2014. The role of carbohydrates in plant resistance to abiotic stresses. In: Emerging Technologies and Management of Crop Stress Tolerance. Academic Press : 229-270. 
https://doi.org/10.1016/B978-0-12-800876-8.00011-4
 
82. Krasensky J., Jonak C. 2012. Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63 : 1593-1608.
https://doi.org/10.1093/jxb/err460
 
83. Kratsch H.A., Wise R.R. 2000. The ultrastructure of chilling stress. Plant Cell Environ. 23 (4) : 337-350.
https://doi.org/10.1046/j.1365-3040.2000.00560.x
 
84. Kumar R., Bishop E., Bridges WC., Tharayil N., Sekhon R.S. 2019. Sugar partitioning and source-sink interaction are key determinants of leaf senescence in maize. Plant Cell Environ. 42 (9) : 2597-2611.
https://doi.org/10.1111/pce.13599
 
85. Lara-Núñez A., García-Ayala B.B., Garza-Aguilar S.M., Flores-Sánchez J., Sánchez-CamargoV.A., Bravo-Alberto C.E., Vázquez-Ramos J.M. 2017. Glucose and sucrose differentially modify cell proliferation in maize during germination. Plant Physiol. Biochem. 113 : 20-31.
https://doi.org/10.1016/j.plaphy.2017.01.018
 
86. Lasseur B., Lothier J., Wiemken A., Van Laer, A., Morvan-Bertrand A., Van den Ende W. 2011. Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose: fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne). J. Exp. Bot. 62 : 1871-1885.
https://doi.org/10.1093/jxb/erq388
 
87. Lastdrager J., Hanson J., Smeeken S. 2014. Sugar signals and the control of plant growth and development. J. Exp. Bot. 65 : 799-807.
https://doi.org/10.1093/jxb/ert474
 
88. Leuendorf J.E., Fran M., Schmülling T.A. 2020. Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci Rep. 10 : 689. 
https://doi.org/10.1038/s41598-019-56797-x
 
89. Li J., Qin M., Qiao X., Cheng Y., Li X., Zhang H., Wu J. 2017. A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear (Pyrus bretschneideri). Plant Cell Physiol. 58 : 839-850.
https://doi.org/10.1093/pcp/pcx025
 
90. Li S.L., Li Z.G., Yang L.T., Li Y.R., He Z.L. 2018. Differential effects of cold stress on chloroplasts structures and photosynthetic characteristics in cold-sensitive and cold-tolerant cultivars of sugarcane. Sugar Tech. 20 (1) : 11-20.
https://doi.org/10.1007/s12355-017-0527-5
 
91. Li W., Liu Y., Liu M., Zheng Q., Li B., Li Z., Li H. 2019. Sugar accumulation is associated with leaf senescence induced by long-term high light in wheat. Plant Sci. 287 : 110169. 
https://doi.org/10.1016/j.plantsci.2019.110169
 
92. Li W., Ren Z., Wang Z., Sun K., Pei X., Liu Y., Zhang W. 2018. Evolution and stress responses of Gossypium hirsutum SWEET genes. Int. J. Mol. Sci. 19 (3) : 769.
https://doi.org/10.3390/ijms19030769
 
93. Li Y., Wang X., Ban Q., Zhu X., Jiang C., Wei C., Bennetzen J.L. 2019. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genomics. 20 (1) : 624. 
https://doi.org/10.1186/s12864-019-5988-3
 
94. Li S.L., Li Z.G., Yang L.T., Li Y.R., He Z.L. 2018. Differential effects of cold stress on chloroplasts structures and photosynthetic characteristics in cold-sensitive and cold-tolerant cultivars of sugarcane. Sugar Tech. 20 (1) : 11-20.
https://doi.org/10.1007/s12355-017-0527-5
 
95. Lianopoulou V., Bosabalidis A.M., Patakas A., Lazari D., Panteris E. 2014. Effects of chilling stress on leaf morphology, anatomy, ultrastructure, gas exchange, and essential oils in the seasonally dimorphic plant Teucrium polium (Lamiaceae). Acta Physiol. Plant. 36 (8) : 2271-2281.
https://doi.org/10.1007/s11738-014-1605-x
 
96. Liu J., Shi Y., Yang S. 2018. Insights into the regulation of CBF cold signaling in plants. J. Integr. Plant Biol. 9 : 780-795.
https://doi.org/10.1111/jipb.12657
 
97. Liu X., Fu L., Qin P., Sun Y., Liu J., Wang X. 2019. Overexpression of the wheat trehalose 6-phosphate synthase 11 gene enhances cold tolerance in Arabidopsis thaliana. Gene. 710 : 210-217.
https://doi.org/10.1016/j.gene.2019.06.006
 
98. Liu Y.H., Offler C.E., Ruan Y.L. 2016. Cell wall invertase promotes fruit set under heat stress by suppressing ROS-independent cell death. Plant Physiol. 172 : 163-180.
https://doi.org/10.1104/pp.16.00959
 
99. Lü J., Sui X., Ma S., Li X., Liu H., Zhang Z. 2017. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance. Plant Mol. Biol. 95 (1-2) : 1-15.
https://doi.org/10.1007/s11103-017-0621-9
 
100. Lu J.G., Sui X.L., Ma S., Li X., Liu H., Zhang Z.X. 2017. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance. Plant Mol. Biol. 95 : 1-15.
https://doi.org/10.1007/s11103-017-0621-9
 
101. Lunn J.E. 2016. Sucrose Metabolism. eLS. John Wiley & Sons, Ltd: Chichester. 
https://doi.org/10.1002/9780470015902.a0021259.pub2
 
102. Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M 2014. Trehalose metabolism in plants. Plant J. 79 (4) : 544-567.
https://doi.org/10.1111/tpj.12509
 
103. Lütz C. 2010. Cell physiology of plants growing in cold environments. Protoplasma. 244 (1-4) : 53-73.
https://doi.org/10.1007/s00709-010-0161-5
 
104. Lütz C., Bergweiler P., Di Piazza L., Holzinger A. 2012. Cell organelle structure and function in Alpine and Polar plants are influenced by growth conditions and climate. In: Plants in Alpine Regions: Cell Physiology of Adaption and Survival Strategies : 43-60.
https://doi.org/10.1007/978-3-7091-0136-0_5
 
105. Maleki M., Ghorbanpour M. 2018. Cold tolerance in plants: molecular machinery deciphered. In: Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants. Academic Press : 57-71.
https://doi.org/10.1016/B978-0-12-813066-7.00004-8
 
106. Markovskaya, E. F., Shibaeva, T. G. 2017. Low temperature sensors in plants: Hypotheses and assumptions. Biol. Bull. 44 (2) : 150-158.
https://doi.org/10.1134/S1062359017020145
 
107. Martin M.V., Fiol D.F., Sundaresan V., Zabaleta E.J., Pagnussata D.C. 2013. Oiwa, a female gametophytic mutant impaired in a mitochondrial manganese-superoxide dismutase, reveals crucial roles for reactive oxygen species during embryo sac development and fertilization in Arabidopsis. Plant Cell. 25 : 1573-1591.
https://doi.org/10.1105/tpc.113.109306
 
108. Mathew L., McLachlan A., Jibran R., Burritt D.J., Pathirana R. 2018. Cold, antioxidant and osmotic pre-treatments maintain the structural integrity of meristematic cells and improve plant regeneration in cryopreserved kiwifruit shoot tips. Protoplasma. 255 (4) : 1065-1077.
https://doi.org/10.1007/s00709-018-1215-3
 
109. McQuigg J.D. 2018. Climatic variability and plant productivity. In: Handbook of Agricultural Productivity. CRC Press : 3-10.
 
110. Mollo L., Martins M.C.M., Oliveira V.F., Nievola C.C., Cassi R., Figueiredo-Ribeiro L. 2011. Effects of low temperature on growth and non-structural carbohydrates of the imperial bromeliad Alcantarea imperialis cultured in vitro. Plant Cell Tissue Organ Cult. 107 : 141-149.
https://doi.org/10.1007/s11240-011-9966-y
 
111. Nafees M., Fahad S., Sha, A.N., Bukhar M. A., Ahmed I., Ahmad S., Hussain S. 2019. Reactive oxygen species signaling. In: Plants. Plant Abiotic Stress Tolerance. Springer, Cham : 259-272.
https://doi.org/10.1007/978-3-030-06118-0_11
 
112. Nägele T., Kandel B.A., Frana S., Meißner M., Heyer A.G. 2011. A systems biology approach for the analysis of carbohydrate dynamics during acclimation to low temperature in Arabidopsis thaliana. FEBS J. 278 (3) : 506-518.
https://doi.org/10.1111/j.1742-4658.2010.07971.x
 
113. Nagler M., Nukarinen E., Weckwerth W., Nägele T. 2015. Integrative molecular profiling indicates a central role of transitory starch breakdown in establishing a stable C/N homeostasis during cold acclimation in two natural accessions of Arabidopsis thaliana. BMC Plant Biol. 15 : 284.
https://doi.org/10.1186/s12870-015-0668-1
 
114. Newell C.A., Natesan S.K., Sullivan J.A., Jouhet J., Kavanagh T.A., Gray J.C. 2012. Exclusion of plastid nucleoids and ribosomes from stromules in tobacco and Arabidopsis. Plant J. 69 : 399-410.
https://doi.org/10.1111/j.1365-313X.2011.04798.x
 
115. Novitskaya L.L., Tarelkina T.V., Galibina N.A., Moshchenskaya Yu.L., Nikolaeva N.N., Nikerov K.M. Podgornaya M.N., Sofronova I.N., Semenova L.I. 2020. The formation of structural abnormalities in Karelian birch wood is associated with auxin inactivation and disrupted basipetal auxin transport. J. Plant Growth Regul. 39 : 378-394.
https://doi.org/10.1007/s00344-019-09989-8
 
116. O'Hara LE, Paul MJ, Wingler A. 2013. How do sugars regulate plant growth insight into the role of trehalose-6-phosphate. and development? New Mol. Plant 6 : 261-274.
https://doi.org/10.1093/mp/sss120
 
117. Palta J. P., Weiss L. S. 2018. Ice formation and freezing injury: an overview on the survival mechanisms and molecular aspects of injury and cold acclimation in herbaceous plants. In: Advances in Plant Cold Hardiness. CRC Press : 143-176.
https://doi.org/10.1201/9781351069526-11
 
118. Park S., Gilmour S.J., Grumet R., Thomashow M.F. 2018. CBF-dependent and CBF independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy. PLoS ONE. 13 (12) : e0207723. 
https://doi.org/10.1371/journal.pone.0207723
 
119. Pastorczyk, M., Giełwanowska, I., Lahuta, L. B. 2014. Changes in soluble carbohydrates in polar Caryophyllaceae and Poaceae plants in response to chilling. Acta Physiol. Plant. 36 (7) : 1771-1780.
https://doi.org/10.1007/s11738-014-1551-7
 
120. Patzke K., Prananingrum P., Klemens P. A., Trentmann O., Rodrigues C. M., Keller I., Schmitz-Esse S. 2019. The plastidic sugar transporter pSuT influences flowering and affects cold responses. Plant Physiol. 179 : 569-587.
https://doi.org/10.1104/pp.18.01036
 
121. Peng T., Zhu X., Duan N., Liu J. H. 2014. PtrBAM 1, a β-amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant Cell Environ. 37 (12) : 2754-2767.
https://doi.org/10.1111/pce.12384
 
122. Plohovska S.G., Yemets A.I., Blume Y.B. 2016. Influence of cold on organization of actin filaments of different types of root cells in Arabidopsis thaliana. Cytol. Genet. 50 (5) : 318-323.
https://doi.org/10.3103/S0095452716050108
 
123. Pollock C.J., Cairns A.J., Sims I.M., Housley T.L. 2017. Fructans as reserve carbohydrates in crop plants. In: Photoassimilate Distribution Plants and Crops Source-Sink Relationships. Routledge : 97-114.
 
124. Pommerrenig B., Ludewig F., Cvetkovic J., Trent¬mann O., Klemens P.A., Neuhaus H.E. 2018. In concert: orchestrated changes in carbohydrate homeostasis are critical for plant abiotic stress tolerance. Plant Cell Physiol. 59 (7) : 1290-1299.
https://doi.org/10.1093/pcp/pcy037
 
125. Pu Y., Liu L., Wu J., Zhao Y., Bai J., M, L., Sun W. 2019. Transcriptome profile analysis of winter rapeseed (Brassica napus L.) in response to freezing stress, reveal potentially connected events to freezing stress. Int. J. Mol. 20 (11) : 2771.
https://doi.org/10.3390/ijms20112771
 
126. Raju S.K.K., Barnes A.C., Schnable J.C., Roston R.L. 2018. Low-temperature tolerance in land plants: Are transcript and membrane responses conserved?. Plant Sci. 276 : 73-86.
https://doi.org/10.1016/j.plantsci.2018.08.002
 
127. Rodriguez M., Parola R., Andreola S., Pereyra C., Martínez-Noël G. 2019. TOR and SnRK1 signaling pathways in plant response to abiotic stresses: do they always act according to the "yin-yang" model? Plant Sci. 288 : 110220. 
https://doi.org/10.1016/j.plantsci.2019.110220
 
128. Ruan Y. L. 2012. Signaling role of sucrose metabolism in development. Molecular Plant. 5 (4) : 763-765.
https://doi.org/10.1093/mp/sss046
 
129. Ruan Y. L. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 65 : 33-67.
https://doi.org/10.1146/annurev-arplant-050213-040251
 
130. Saeiahagh H., Mousavi M., Wiedow C., Bassett H.B., Pathirana R. 2019. Effect of cytokinins and sucrose concentration on the efficiency of micropropagation of 'Zes006' Actinidia chinensis var. chinensis, a red-fleshed kiwifruit cultivar. Plant Cell Tissue Organ Cult. 138 (1) : 1-10.
https://doi.org/10.1007/s11240-019-01597-4
 
131. Saito M., Yoshida M. 2011. Expression analysis of the gene family associated with raffinose accumulation in rice seedlings under cold stress. J. Plant Physiol. 168 : 2268-2271.
https://doi.org/10.1016/j.jplph.2011.07.002
 
132. Sakr S., Wang M., Dédaldéchamp F., Perez-Garcia M.D., Ogé L., Hamama L., Atanassova R. 2018. The sugar-signaling hub: Overview of regulators and interaction with the hormonal and metabolic network. Int. J. Mol. Sci. 19 (9) : 2506.
https://doi.org/10.3390/ijms19092506
 
133. Sami F., Yusuf M., Faizan M., Faraz A., Hayat S. 2016. Role of sugars under abiotic stress. Plant Physiol. Biochem. 109 : 54-61.
https://doi.org/10.1016/j.plaphy.2016.09.005
 
134. Sarabia L.D., Hill C.B., Boughton B.A., Roessner U. 2018. Advances of metabolite profiling of plants in challenging environments. Annu. Plant Rev. online : 1-45. 
https://doi.org/10.1002/9781119312994.apr0627
 
135. Schattat M., Griffiths S., Mathur N., Barton K., Wozny M., Dunn N. 2012a. Differential coloring reveals that plastids do not form networks for exchanging macromolecules. Plant Cell. 24 : 1465-1477.
https://doi.org/10.1105/tpc.111.095398
 
136. Schattat M., Klösgen R.B., Mathur J. 2012b. New insights on stromules: stroma filled tubules extended by independent plastids. Plant Signal. 7 : 1132-7. 
https://doi.org/10.4161/psb.21342
 
137. Schattat M.H., Barton K.A., Mathur J. 2015. The myth of interconnected plastids and related phenomena. Protoplasma. 252 (1) : 359-371.
https://doi.org/10.1007/s00709-014-0666-4
 
138. Sengupta S., Mukherjee S., Basak P., Majumder A.L. 2015. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front. Plant Sci. 6 : 656. 
https://doi.org/10.1111/plb.12053
 
139. Shimosaka E., Ozawa K. 2015. Overexpression of cold-inducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice. Breeding Sci. 65 (5) : 363-371.
https://doi.org/10.1270/jsbbs.65.363
 
140. Silva F.G D., Canguss L. M.B., Paula S.L.A.D., Melo G.A., Silva E. A. 2013. Seasonal changes in fructan accumulation in the underground organs of Gomphrena marginata Seub.(Amaranthaceae) under rock-field conditions. Theor. Exp. Plant Phys. 25 (1) : 46-55.
https://doi.org/10.1590/S2197-00252013000100006
 
141. Slewinski T.L. 2011. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. Mol. Plant. 4 : 641-662.
https://doi.org/10.1093/mp/ssr051
 
142. Sun S., Fang J., Lin M., Qi X., Chen J., Wang R., Muhammad A. 2020. Freezing Tolerance and Expression of β-amylase Gene in Two Actinidia arguta Cultivars with Seasonal Changes. Plants. 9 (4) : 515. 
https://doi.org/10.3390/plants9040515
 
143. Tarkowski Ł.P., Van den Ende W. 2015. Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Front. Plant Sci. 6 : 203.
https://doi.org/10.3389/fpls.2015.00203
 
144. Tisarum R., Theerawitaya C., Samphumphuang T., Singh H. P., Chaum S. 2020. Foliar application of glycinebetaine regulates soluble sugars and modulates physiological adaptations in sweet potato (Ipomoea batatas) under water deficit. Protoplasma. 257 : 197-211.
https://doi.org/10.1007/s00709-019-01429-4
 
145. Trentmann O., Mühlhaus T., Zimmer D., Sommer F.K., Schroda M., Haferkamp I., Neuhaus H.E. 2020. Identification of chloroplast envelope proteins with critical importance for cold acclimation. Plant Physiol. 182 (3) : 1239-1255.
https://doi.org/10.1104/pp.19.00947
 
146. Udomdee W., Wen, P. J., Lee C.Y., Chin S.W., Chen F.C. 2014. Effect of sucrose concentration and seed maturity on in vitro germination of Dendrobium nobile hybrids. Plant Growth Regul. 72 (3) : 249-255.
https://doi.org/10.1007/s10725-013-9856-x
 
147. Van den Ende W. 2013. Multifunctional fructans and raffinose family oligosaccharides. Front. Plant Sci. 4 : 247.
https://doi.org/10.3389/fpls.2013.00247
 
148. Van den Ende W., El-Esawe S. K. 2014. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses? Environ. Exp. Bot. 108 : 4-13.
https://doi.org/10.1016/j.envexpbot.2013.09.017
 
149. Van Dingenen, J., Vermeersch, M., De Milde, L., Hulsmans, S., De Winne, N., Van Leene, J., Inzé, D. 2019. The role of HEXOKINASE1 in Arabidopsis leaf growth. Plant Mol. Biol. 99 (1-2) : 79-93.
https://doi.org/10.1007/s11103-018-0803-0
 
150. Wan H., Wu L., Yang Y., Zhou G., Ruan Y. L. 2018. Evolution of sucrose metabolism: the dichotomy of invertases and beyond. Trends Plant Sci. 23 (2) : 163-177.
https://doi.org/10.1016/j.tplants.2017.11.001
 
151. Wang L. H., Li G. L., Wei S., Li L.J., Zuo S. Y., Liu X., Li J. 2019. Effects of exogenous glucose and sucrose on photosynthesis in triticale seedlings under salt stress. Photosynthetica. 57 (1) : 286-294.
https://doi.org/10.32615/ps.2019.030
 
152. Wang L., Yao L., Hao X., Li N., Qian W., Yue C., Wang X. 2018. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Mol Biol. 96 : 577-592.
https://doi.org/10.1007/s11103-018-0716-y
 
153. Wang H., Xin H., Guo J., Gao Y., Liu C., Dai D., Tang L. 2019. Genome-wide screening of hexokinase gene family and functional elucidation of HXK2 response to cold stress in Jatropha curcas. Mol. Boil. Rep. 46 (2) : 1649-1660.
https://doi.org/10.1007/s11033-019-04613-0
 
154. Weiszmann J., Fürtauer L., Weckwerth W., Nägele T. 2018. Vacuolar sucrose cleavage prevents limitation of cytosolic carbohydrate metabolism and stabilizes photosynthesis under abiotic stress. FEBS J. 285 (21) : 4082-4098.
https://doi.org/10.1111/febs.14656
 
155. World agricultural production 2018. United States Department of Agriculture, Foreign Agricultural Service, Circular Series: December https://apps.fas.usda.gov/psdonline/circulars/production.pdf
 
156. Wurzinger B., Nukarinen E., Nägele T., Weckwerth W., Teige M. 2018. The SnRK1 kinase as central mediator of energy signaling between different organelles. Plant Physiol. 176 (2) : 1085-1094.
https://doi.org/10.1104/pp.17.01404
 
157. Xalxo R., Yadu B., Chandra J., Chandrakar V., Keshavkant S. 2020. Alteration in Carbohydrate Metabolism Modulates Thermotolerance of Plant under Heat Stress. Heat Stress Tolerance in Plants. In: Physiological, Molecular and Genetic Perspectives : 77-115.
https://doi.org/10.1002/9781119432401.ch5
 
158. Xiong, Y., Sheen, J. 2015. Novel links in the plant TOR kinase signaling network. Curr. Opin. Plant Biol. 28 : 83-91.
https://doi.org/10.1016/j.pbi.2015.09.006
 
159. Yang G., Xu H., Zou Q., Zhang J., Jiang S., Fang H., Chen X. 2020. The vacuolar membrane sucrose transporter MdSWEET16 plays essential roles in the cold tolerance of apple. Plant Cell Tiss Organ Cult. 140 : 129-142.
https://doi.org/10.1007/s11240-019-01717-0
 
160. Yue C., Cao H., Wang L. 2015. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Mol. Biol. 88 : 591-608.
https://doi.org/10.1007/s11103-015-0345-7
 
161. Zhang J., Gu H, Dai H., Zhang Z., Miao M. 2020. Alternative polyadenylation of the stacyose synthase gene mediates source-sink regulation in cucumber, J. Plant Physiol. 245 : 153111.
https://doi.org/10.1016/j.jplph.2019.153111
 
162. Zhang J., Wu Z., Hu F., Liu L., Huang X., Zhao J., Wang H. 2018. Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes. Hort. Res. 5. (1) : 1-13.
https://doi.org/10.1038/s41438-018-0042-1
 
163. Zhang Z-G., Lv G-d., Li B., Wang J-J., Zhao Y., Kong F-M. 2017. Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L.). PLoS ONE. 12 (3) : e0174425. 
https://doi.org/10.1371/journal.pone.0174425
 
164. Zhao L., Yang T., Xing C., Dong H., Qi K., Gao J., Huang X. 2019. The β-amylase PbrBAM3 from pear (Pyrus betulaefolia) regulates soluble sugar accumulation and ROS homeostasis in response to cold stress. Plant Sci. 287 : 110184. 
https://doi.org/10.1016/j.plantsci.2019.110184
 
165. Zhao Y., Zhou M., Xu K., Li J., Li S., Zhang S., Yang X. 2019. Integrated transcriptomics and metabolomics analyses provide insights into cold stress response in wheat. Crop J. 7 (6) : 857-866.
https://doi.org/10.1016/j.cj.2019.09.002
 
166. Zúñiga-Feest A., Bascuñán-Godoy L., Reyes-Diaz M. 2009. Is survival after ice encasement related with sugar distribution in organs of the Antarctic plants Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae)? Polar Biol. 32 : 583-591.
https://doi.org/10.1007/s00300-008-0553-6
 
167. Żur I., Gołębiowska G., Dubas E., Golemiec E., Matušíková I., Libantová J., Moravčíková J. 2013. β-1, 3-glucanase and chitinase activities in winter triticales during cold hardening and subsequent infection by Microdochium nivale. Biologia. 68 (2) : 241-248.
https://doi.org/10.2478/s11756-013-0001-0