Вісн. Харків. нац. аграрн. ун-ту. Сер. Біологія, 2020, вип. 1 (49), с. 18-43


https://doi.org/10.35550/vbio2020.01.018




АНТИОКСИДАНТНА СИСТЕМА І СТІЙКІСТЬ РОСЛИН ДО ДІЇ ВАЖКИХ МЕТАЛІВ


Ю. Є. Колупаєв1, 2, Т. О. Ястреб1, Ю. В. Карпець1

1Харківський національний аграрний університет ім. В.В. Докучаєва
(Харків, Україна)
E-mail:
plant_biology@ukr.net
2Харківський національний університет ім. В.Н. Каразіна

(Харків, Україна)


Одним із механізмів токсичної дії важких металів на рослини є розвиток окиснювального стресу. Його причинами можуть бути порушення транспорту електронів в електрон-транспортних ланцюгах хлоропластів і мітохондрій, інактивація антиоксидантних ферментів, посилення утворення активних форм кисню в неферментативних реакціях, зумовлене прямою участю іонів заліза і міді, а також інших важких металів зі змінною валентністю. Питання зв'язку між накопиченням рослинами важких металів і активацією антиоксидантної системи, антиоксидантною активністю і стійкістю до важких металів уже багато років є предметом дискусії. В огляді розглянуто внесок ферментативної антиоксидантної системи, фітохелатинів і флавоноїдних сполук в захисні процеси при дії на рослини важких металів. В останні роки накопичуються експериментальні дані, які свідчать про можливість індукування антиоксидантної системи і стійкості рослин до іонів важких металів за допомогою сигнальних посередників, в тому числі газотрансмітерів (NO, H2S). Також накопичені відомості про індукування протекторних систем і металорезистентності рослин за допомогою брасиностероїдів, саліцилової і жасмонової кислот і деяких інших фітогормонів і метаболітів. В огляді аналізуються дані про зв'язок між стійкістю рослин до дії важких металів і станом антиоксидантної системи, про можливості регуляції антиоксидантної активності і стійкості рослин дією екзогенних фізіологічно активних речовин.


Ключові слова:важкі метали, рослина, антиоксидантна система, сигнальні посередники, фітогормони, стійкість

 


ЛІТЕРАТУРА


1. Bakakina Yu.S., Kolesneva E.V., Dubovskaya L.V., Volotovskii I.D. 2011. Effect of temperature stress on intracellular NO concentration and endogenous cGMP content in Arabidopsis thaliana seedlings. Vestsi Nats. Akad. Navuk Belarusi, Ser. Biol. Navuk. 1 : 50-56.
 
2. Bashmakov D.I., Lukatkin A.S. 2009. Ekologo-fiziologicheskiye aspekty akkumulyatsii i raspre-deleniya tyazhelykh metallov u vysshikh rasteniy (Eco-physiological aspects of heavy metals accumulation and allocation in higher plants). Saransk : Publishing House of Mordovian State University : 236 p.
 
3. Belyavskaya N.A., Fediuk O.M., Zolotareva E.K. 2018. Plants and heavy metals: perception and signaling. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (45) : 10-30.
https://doi.org/10.35550/vbio2018.03.010
 
4. Garifzyanov A.R., Ivanishhev V.V. 2012. Antioksi-dantnaya sistema kak osnova ustojchivosti rastenij (Antioxidant system as basis for plant resistance). Saarbryukken: LAP LAMBERT Academic Publish-ing : 191 с.
 
5. Gryshko V.N., Syschykov D.V. 2012. Funktsion-irovaniye glutationzavisimoy antioksidantnoy siste-my i ustoychivost' rasteniy pri deystvii tyazhelykh metallov i ftora (Functioning of the glutathione-dependent antioxidant system and plant resistance under the action of heavy metals and fluorine). Ki-ev : Naukova dumka : 239 p.
 
6. Gural'chuk, Zh.Z. 1994. The mechanisms of plant re-sistance to heavy metals. Fiziol. Biokh. Kul't. Rast. 26 : 107-118.
 
7. Kabata-Pendias A., Pendias H. 1989. Trance Elements in Soil and Plants. Moscow : 439 p.
 
8. Karpets Yu.V. 2017. Role of calcium ions and reactive oxygen species in induction of antioxidant enzymes and heat resistance of plant cells by nitric oxide do-nor. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (42) : 52-61. 
https://doi.org/10.35550/vbio2017.03.052
 
9. Karpets Yu.V., Kolupaev Yu.E., Vayner A.A. 2015. Functional interaction between nitric oxide and hy-drogen peroxide during formation of wheat seedling induced heat resistance. Russ. J. Plant Physiol. 62 (1) : 65-70. doi.org/10.1134/S1021443714060090
https://doi.org/10.1134/S1021443714060090
 
10. Karpets Yu.V., Kolupaev Yu.E. 2017. Functional inter-action of nitric oxide with reactive oxygen species and calcium ions at development of plants adaptive responses. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (41) : 6-31. 
https://doi.org/10.35550/vbio2017.02.006
 
11. Kolupaev Yu.E. 2016. Plant cell antioxidants and their role in ROS signaling and plant resistance. Uspekhi Sovrem. Biologii. 136 (2) : 181-198.
 
12. Kolupaev Yu.E., Vayner A.A. 2014. Mechanisms of the stress-protective effect of brassinosteroids on plants. Agrokhimiya. 7 : 69-84.
 
13. Kolupaev Yu.E., Vayner A.A., Yastreb T.O. 2014. Pro-line: physiological functions and regulation of its content in plants under stress conditions. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (32) : 6-22
 
14. Kolupaev Yu.E, Karpets Yu.V. 2014. Reactive oxygen species and stress signaling in plants. Ukr. Biochem. J. 86 (4) : 18-35. 
https://doi.org/10.15407/ubj86.04.018
 
15. Kolupaev Yu.E., Yastreb T.O., Oboznyi A.I., Ryab-chun N.I., Kirichenko V.V. 2016. Constitutive and cold-induced resistance of rye and wheat seedlings to oxidative stress. Russ. J. Plant Physiol. 63 (3) : 326-337. 
https://doi.org/10.1134/S1021443716030067
 
16. Kolupaev Yu.E., Yastreb T.O. Hydrogen sulfide and plant adaptation to abiotic stressors. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya = Tomsk State University Journal of Biology. 2019. 48 : 158-190. 
https://doi.org/10.17223/19988591/47/8
 
17. Kreslavski V.D., Los D.A., Allakhverdiev S.I., Kuz-netsov Vl.V. 2012. Signaling role of reactive oxygen species in plants under stress. Russ. J. Plant Physiol. 59 : 2 : 141-154. 
https://doi.org/10.1134/S1021443712020057
 
18. Mamaeva A.S., Fomenkov A.A., Nosov A.V., Mosh-kov, I.E., Mur, L.A.J., Hall, M.A., and Noviko-va G.V. 2015. Regulatory role of nitric oxide in plants. Russ. J. Plant Physiol. 62 (4) : 427-440. 
https://doi.org/10.1134/S1021443715040135
 
19. Pradedova E.V., Nimaeva O.D., Salyaev R.K. 2017. Redox processes in biological systems. Russ. J. Plant Physiol. 64 (6) : 822-832. 
https://doi.org/10.1134/S1021443717050107
 
20. Titov A.F., Kaznina N.M., Talanova V.V. 2014. Tya-zhelyye metally i rasteniya (Heavy metals and plants). Petrozavodsk : 194 p.
 
21. Tkachuk V.A., Tyurin-Kuzmi P.A., Belousov V.V., Vo-rotnikov A.V. 2012. Hydrogen peroxide as a new second messenger. Biol. Membrany. 29 (1) : 21-37.
 
22. Cherenkevich S.N., Martinovich G.G., Martinovich I.V., Gorudko I.V., Shamova, E.V. 2013. Redox regulation of cellular activity: concepts and mechanisms. Proceedings of the National Academy of Sciences of Belarus. Series of Biological Sciences. 1 : 92-108.
 
23. Abass M.H., Neama J.D. Al-Jabary K. 2016. Biochemi-cal responses to cadmium and lead stresses in date palm (Phoenix dactylifera L.) plants. AAB Bioflux. 8 : 92-110.
 
24. Ahammed G.J., Choudhary S.P., Chen S., Xia X., Shi K., Zhou Y., Yu J. 2013. Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J. Exp. Bot. V. 64. P. 199-213.
https://doi.org/10.1093/jxb/ers323
 
25. Ahmad F., Singh A., Kamal A. 2018. Crosstalk of brassinosteroids with other phytohormones under various abiotic stresses. J. App. Biol. Biotechnol. 6 (1) : 56-62.
 
26. Ahmad P., Alyemeni M.N., Wijaya L., Alam P., Ahanger M.A., Alamri S.A. 2017. Jasmonic acid al-leviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Arch. Agron. Soil Sci. 63 (13) : 1889-1899.
https://doi.org/10.1080/03650340.2017.1313406
 
27. Ali B., Mwamba T.M., Gill R.A., Yang C., Ali S., Daud M.K., Wu Y., Zhou W. 2014. Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide. Plant Growth Regul. 74 : 261-273.
https://doi.org/10.1007/s10725-014-9917-9
 
28. Alamri S.A., Siddiqui M.H., Al-Khaishany M.Y., Ali H.M., Al-Amri A., AlRabiah H.K. 2018. Exoge-nous application of salicylic acid improves tolerance of wheat plants to lead stress. Adv. Agricult. Sci. 6 (02) : 25-35.
 
29. Arora D., Jain P., Singh N., Kaur H., Bhatla S.C. 2016. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radical Res. 50 : 291-303.
https://doi.org/10.3109/10715762.2015.1118473
 
30. Asad S. A., Muhammad S., Farooq M., Afzal A., Broad-ley M., Young S., West, H. 2015. Anthocyanin pro-duction in the hyperaccumulator plant Noccaea caerulescens in response to herbivory and zinc stress. Acta Physiol. Plant. 37 : 1715.
https://doi.org/10.1007/s11738-014-1715-5
 
31. Asgher M., Per T.S., Anjum S., Khan M.I.R., Masood A., Verma S., Khan N.A. 2017. Contribu-tion of glutathione in heavy metal stress tolerance in plants. Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiot-ic Stress (eds. M.I.R. Khan, N.A. Khan). Springer Nature Singapore Pte Ltd : 297-313.
https://doi.org/10.1007/978-981-10-5254-5_12
 
32. Astier J., Lindermayr C. 2012. Nitric oxide-dependent posttranslational modi-fication in plants: an update. Int. J. Mol. Sci. 13 : 15193-15208.
https://doi.org/10.3390/ijms131115193
 
33. Aziz E. E., Gad N., Badran N. M. 2007. Effect of cobalt and nickel on plant growth, yield and flavonoids content of Hibiscus sabdariffa L. Aust. J. Basic Appl. Sci. 1 : 73-78.
 
34. Bai X, Yang L, Tian M, Chen J, Shi J, Yang Y, Hu X. 2011. Nitric oxide enhances desiccation tolerance of recalci-trant Antiaris toxicaria seeds via protein Snitrosyla-tion and carbonylation. PLoS One. e20714.
https://doi.org/10.1371/journal.pone.0020714
 
35. Bajguz A., Hayat S. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47 : 1-8.
https://doi.org/10.1016/j.plaphy.2008.10.002
 
36. Basu U., Good A.G., Taylor G.J. 2001. Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dis-mutase cDNA are resistant to aluminium. Plant Cell Environ. 24 : 1278-1269.
https://doi.org/10.1046/j.0016-8025.2001.00783.x
 
37. Bienert G.P., Moller A.L., Kristiansen K.A., Schulz A., Moller I.M., Schjoerring J.K., Jahn T.P. 2007. Spe-cific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282 : 1183-1192.
https://doi.org/10.1074/jbc.M603761200
 
38. Bretzel F., Benvenuti S. Pistelli L. 2014. Metal contam-ination in urban street sediment in Pisa (Italy) can affect the production of antioxidant metabolites in Taraxacum officinale Weber. Environ. Sci. Pollut. Res. 21 : 2325-2333.
https://doi.org/10.1007/s11356-013-2147-2
 
39. Chadzinikolau T., Kozłowska M., Mleczek M. 2017. Induction of phytochelatins and flavonoids in cad-mium polluted Berberis thunbergii. Dendrobiology. 77 : 139-146.
https://doi.org/10.12657/denbio.077.011
 
40. Chandrakar V., Dubey A., Keshavkant S. 2016. Modu-lation of antioxidant enzymes by salicylic acid in ar-senic exposed Glycine max L. J. Soil Sci. Plant Nu-trition. 16 (3) : 662-676
https://doi.org/10.4067/S0718-95162016005000048
 
41. Chen Z., Yang B., Hao Z.,•Zhu J., Zhang Y.,•Xu T. 2018. Exogenous hydrogen sulfide ameliorates seed germination and seedling growth of cauliflower un-der lead stress and its antioxidant role. J. Plant Growth Regul. 37 : 5-15.
https://doi.org/10.1007/s00344-017-9704-8
 
42. Chen C., Dickman M.B. 2005. Proline suppresses apop-tosis in the fungal pathogen Colletotrichum trifolii. Proc. Natl. Acad. Sci. USA. 102 : 3459-3464.
https://doi.org/10.1073/pnas.0407960102
 
43. Clarke A., Desikan R., Hurst R.D., Hancock J.T., Neill S.J. 2000. NO way back: nitric oxide and pro-grammed cell death in Arabidopsis thaliana suspen-sion cultures. Plant J. 24 : 667-677.
https://doi.org/10.1046/j.1365-313x.2000.00911.x
 
44. Chmielowska-Bąk J., Arasimowicz-Jelonek M., Izbiańska K., Frontasyeva M., Zinicovscaia I, Guiance-Varela C., Deckert J. 2017. NADPH oxidase is involved in regulation of gene expression and ROS overproduction in soybean (Glycine max L.) seed-lings exposed to cadmium. Acta Soc. Bot. Pol. 86 (2) : 3551.
https://doi.org/10.5586/asbp.3551
 
45. De Benedictis M., Brunetti C., Brauer E.K., Andreucci A., Popescu S.C., Commisso M., Guzzo F., Sofo A., Castiglione M,R., Vatamaniuk O.K., Sanita di Toppi L. 2018. The Arabidopsis thaliana knockout mutant for phytochelatin synthase1 (cad1-3) is defective in callose deposition, bacterial pathogen defense and auxin content, but shows an increased stem lignification. Front. Plant Sci. 9 : 19.
https://doi.org/10.3389/fpls.2018.00019
 
46. del Giudice J., Cam Y., Damiani I., Fung-Chat F., Meil-hoc E., Bruand C., Brouquisse R., Puppo A., Bos-car A. 2011. Nitric oxide is required for an optimal establishment of the Medicago truncatula-Sinorhizobium meliloti symbiosis. New Phytol. 191 : 405-417.
https://doi.org/10.1111/j.1469-8137.2011.03693.x
 
47. Delledonne M., Xia Y., Dixon R.A., Lamb C. 1998. Ni-tric oxide functions as a signal in plant disease re-sistance. Nature. 394 : 585-588.
https://doi.org/10.1038/29087
 
48. Dixit P., Mukherjee P.K., Ramachandran V., Eapen S. 2011. Glutathione transferase from Trichoderma vi-rens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLOS ONE. 6 : e16360.
https://doi.org/10.1371/journal.pone.0016360
 
49. Dresler S., Wojciak-Kosior M., Sowa I., Stanisławski G., Bany I., Wojcik M. 2017. Effect of short-term Zn/Pb or long-term multi-metal stress on physiolog-ical and morphological parameters of metallicolous and nonmetallicolous Echium vulgare L. popula-tions. Plant Physiol. Biochem., 115 : 380-389.
https://doi.org/10.1016/j.plaphy.2017.04.016
 
50. Durner J., Wendehemme D., Klessig D.F. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA. 95 : 10328-10333.
https://doi.org/10.1073/pnas.95.17.10328
 
51. Emamverdian A., Ding Y., Mokhberdoran F., Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 756120. 
https://doi.org/10.1155/2015/756120
 
52. Fang H., Liu Z., Long Y., Liang Y., Jin Z., Zhang L., Liu D., Li H., Zhai J., Pei Y. The Ca2+/calmodulin2-binding transcription factor TGA3 elevates LCD ex-pression and H2S production to bolster Cr6+ toler-ance in Arabidopsis. Plant J. 2017. 91 (6) : 1038-1050.
https://doi.org/10.1111/tpj.13627
 
53. Fedenko V. S., Landi M., Shemet S.A. 2017. Detection of nickel in maize roots: A novel nondestructive ap-proach by reflectance spectroscopy and colorimetric models. Ecol. Indic. 82 : 463-469.
https://doi.org/10.1016/j.ecolind.2017.07.021
 
54. Fedenko V.S., Shemet S.A., Guidi L., Landi M. 2020. Metal/metalloid-induced accumulation of phenolic compounds in plants. In: Metal Toxicity in Higher Plants (eds: M. Landi, S.A. Shemet, V.S. Fedenko N.Y.: Nova Science Publishers, pp. 67-115.
 
55. Farooq M.A., Gill R.A., Islam F., Ali B., Liu H., Xu J., He S., Zhou W. 2016. Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in brassica napus L. Front. Plant Sci. 7 : 468. doi: 10.3389/fpls.2016.00468
https://doi.org/10.3389/fpls.2016.00468
 
56. Gill R.A., Ali B., Islam F., Farooq M.A., Gill M.B., Mwamba T.M., Zhou W. 2015. Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress. Plant Physiol. Biochem. 94 : 130-143.
https://doi.org/10.1016/j.plaphy.2015.06.001
 
57. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.Plant Physiol. Biochem. 48 : 909-930.
https://doi.org/10.1016/j.plaphy.2010.08.016
 
58. Grill E., Löffler S., Winnacker E.L., Zenk M.H. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specif-ic gamma-glutamylcysteine dipeptidyl transpepti-dase (phyto-chelatin synthase). Proc. Natl. Acad. Sci. USA. 86 : 6838-6842.
https://doi.org/10.1073/pnas.86.18.6838
 
59. Hamed S.M., Zinta G., Klöck G., Asard H., Selim S., AbdElgawad H. 2017. Zinc-induced differential oxi-dative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotoxi-col. Environ. Saf. 140 : 256-263.
https://doi.org/10.1016/j.ecoenv.2017.02.055
 
60. Hänsch R., Mendel R.R. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol.12 : 259-266.
https://doi.org/10.1016/j.pbi.2009.05.006
 
61. Hasanuzzaman M., Matin M.A., Fardus J., Hasanuz-zaman M., Hossain M.S., Parvin K. 2019. Foliar application of salicylic acid improves growth and yield attributes by upregulating the antioxidant de-fense system in Brassica campestris plants grown in lead-amended soils. Acta Agrobot. 72 (2) : 1765. 
https://doi.org/10.5586/aa.1765
 
62. Hanan A. Hashem, El-Sherif N.A. 2019. Exogenous jasmonic acid induces lead stress tolerance in kidney bean (Phaseolus vulgaris L.) by changing amino acid profile and stimulating antioxidant defense system. Jordan J. Biol. Sci. 12 : 3.
 
63. Hernández L.E., González A., Navazas A., Barón-Sola Á., Martínez F., Cuypers A., Ortega-Villasante C. 2016. Glutathione metabolism in plants under metal and metalloid stress and its im-pact on the cellular redox homoeostasis. In: Redox State as a Central Regulator of Plant-Cell Stress Re-sponses (eds. D.K. Gupta, J.M. Palma, F.J. Corpas). Switzerland : Springer International Publishing : 159-182.
https://doi.org/10.1007/978-3-319-44081-1_8
 
64. Hu Y., Ge Y., Zhang C., Ju T., Cheng, W. 2009. Cad-mium toxity and translo-cation in rice seedlings are reduced by hydrogen peroxidase pretreatment. Plant Growth Regul. V. 59. P. 51-61.
https://doi.org/10.1007/s10725-009-9387-7
 
65. Islam M.M., Hoque M.A., Okuma E., Banu M.N., Shimoishi Y., Nakamura Y., Murata Y. 2009a. Ex-ogenous proline and glycinebetaine increase antioxi-dant enzyme activities and confer tolerance to cad-mium stress in cultured tobacco cells. J. Plant Phys-iol. 166 : 1587-1597.
https://doi.org/10.1016/j.jplph.2009.04.002
 
66. Islam M.M., Hoque M.A., Okuma E., Jannat R., Ba-nu M.N., Jahan M.S., Nakamura Y., Murata Y. 2009b. Proline and glycinebetaine confer cadmium tolerance on tobacco bright yellow-2 cells by in-creasing ascorbate-glutathione cycle enzyme activi-ties. Biosci. Biotechnol. Biochem. 73 : 2320-2323.
https://doi.org/10.1271/bbb.90305
 
67. Ivanov Yu.V., Savochkin Yu.V., Kuznetsov V.V. 2013. Development of scots pine seedlings and functioning of antioxidant systems under the chronic action of lead ions. Biol. Bull. 40 (1) : 26-35.
https://doi.org/10.1134/S1062359013010068
 
68. Javed, M. T., Akram, M. S., Tanwir, K., Chaudhary, H. J., Ali, Q., Stoltz, E. and Lindberg, S. 2017. Cadmi-um spiked soil modulates root organic acids exuda-tion and ionic contents of two differentially Cd tol-erant maize (Zea mays L.) cultivars. Ecotoxicol. En-viron. Saf., 141, 216-225.
https://doi.org/10.1016/j.ecoenv.2017.03.027
 
69. Jin Z., Wang Z., Ma Q., Sun L., Zhang L., Liu Z., Liu D., Hao X., Pei Y. 2017. Hydrogen sulfide mediates ion fluxes inducing stomatal closure in response to drought stress in Arabidopsis thaliana. Plant Soil. Vol. 419 (1-2) : 141-152. 
https://doi.org/10.1007/s11104-017-3335-5
 
70. Kang G.Z., Li G.Z., Liu G.Q., Xu W., Peng X.Q., Wang C.Y., Zhu Y.J., Guo T.C. 2013. Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol. Plant. 57 (4) : 718-724.
https://doi.org/10.1007/s10535-013-0335-z
 
71. Karimi N., Souri, Z. 2016. Antioxidant enzymes and compounds complement each other during arsenic detoxification in shoots of Isatis cappadocica Desv. Chem. Ecol. 32 : 937-951.
https://doi.org/10.1080/02757540.2016.1236087
 
72. Kaur R., Nayyar H. 2014. Ascorbic acid a potent de-fender against environ-mental stresses. In: Oxidative Damage to Plants Antioxidant Networks and Signaling (ed. P. Ahmad). Academic Press is an imprint of Elsevier : 235-287.
https://doi.org/10.1016/B978-0-12-799963-0.00008-3
 
73. Kawano T., Sahashi N., Takahashi K., Uozumi N., Muto S. 1998. Salicylic acid induces extracellular superoxide generation followed by an increase in cy-tosolic calcium ion in Tobacco suspension culture: the earliest events in salicylic acid signal transduc-tion. Plant Cell Physiol. 39 : 721-730.
https://doi.org/10.1093/oxfordjournals.pcp.a029426
 
74. Kaya C., Akram N.A., Sürücüa A., Ashrafc M. 2019. Alleviating effect of nitric oxide on oxidative stress and antioxidant defence system in pepper (Capsicum annuum L.) plants exposed to cadmium and lead toxicity applied separately or in combination. Sci. Horticult. 255 : 52-60.
https://doi.org/10.1016/j.scienta.2019.05.029
 
75. Khan M.I.R., Khan N.A. 2014. Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PSII activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma. 251 : 1007-1019.
https://doi.org/10.1007/s00709-014-0610-7
 
76. Kharbech O., Houmani H., Chaoui A., Corpas F.J. 2017. Alleviation of Cr(VI)-induced oxidative stress in maize (Zea mays L.) seedlings by NO and H2S donors through differential organdependent regula-tion of ROS and NADPH-recycling metabolisms. J. Plant Physiol. 219 : 71-80. 
https://doi.org/10.1016/j.jplph.2017.09.010
 
77. Khlestkina E.K. 2013. The adaptive role of flavonoids: emphasis on cereals. Cereal Res. Commun. 41 : 185-198.
https://doi.org/10.1556/CRC.2013.0004
 
78. Kiran B.R., PrasadM.N.V. 2017. Responses of Ricinus communis L. (castor bean, phytoremediation crop) seedlings to lead (Pb) toxicity in hydroponics. Selcuk J. Agr. Food Sci. 31 : 73-80.
https://doi.org/10.15316/SJAFS.2017.9
 
79. Kohli S.K., Handa N., Gautam V., Bali S., Sharma A., Khanna K., Arora S., Thukral K.A., Ohri P., Kar-pets Y., Kolupaev Y., Bhardwaj R. 2017. ROS sig-naling in plants under heavy metal stress. In: Reac-tive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress (eds. M.I.R. Khan, N.A. Khan). Singapore : Springer Nature Pte Ltd. : 185-214.
https://doi.org/10.1007/978-981-10-5254-5_8
 
80. Kolupaev Yu.E., Karpets Yu.V., Dmitriev A.P. 2015. Signal mediators in plants in response to abiotic stress: calcium, reactive oxygen and nitrogen spe-cies. Cytol. Genet. 49 (5) : 338-348.
https://doi.org/10.3103/S0095452715050047
 
81. Krasylenko Y.A., Yemets A.I., Sheremet Y.A., Blume Y.B. 2012. Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules in Arabidopsis. Physiol. Plant. 145 : 505-515.
https://doi.org/10.1111/j.1399-3054.2011.01530.x
 
82. Kumar A., Pal L., Agrawal, V. 2017. Glutathione and citric acid modulates leadand arsenic-induced phytotoxicity and genotoxicity responses in two cultivars of Solanum lycopersicum L. Acta Physiol. Plant. 39 : 151.
https://doi.org/10.1007/s11738-017-2448-z
 
83. Pandey K.A., Gautam .P. 2020. Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress. Physiol. Plant. 168 (2) : 511-525.
https://doi.org/10.1111/ppl.13064
 
84. Lachman J., Dudjak J., Miholova D., Kolihovas D., Pivec V. 2005. Effect of cadmium on flavonoid content in young barley (Hordeum sativum L.) plants. Plant Soil Environ. 51 (11) :513-516.
https://doi.org/10.17221/3625-PSE
 
85. Laloi C., Stachowiak M., Pers-Kamczyc E., Warzych E., Murgia I., Apel K. 2007. Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 104 : 672-677.
https://doi.org/10.1073/pnas.0609063103
 
86. Laspina N.V., Groppa M.D., Tomaro M.L., Be-navides M.P. 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci. 169 : 323-330.
https://doi.org/10.1016/j.plantsci.2005.02.007
 
87. Lee K.P., Kim C., Landgraf F., Apel K. 2007. EXECUTER1- and EXECUTER2-dependent trans-fer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc. Nat. Acad. Sci. USA. 104 : 10270-10275.
https://doi.org/10.1073/pnas.0702061104
 
88. Li Q., Wang Z., Zhao Y., Zhang X., Zhang S., Bo L., Wang Y., Ding Y., An L. 2016a. Putrescine protects hulless barley from damage due to UV-B stress via H2S- and H2O2-mediated signaling pathways. Plant Cell Rep. 35 : 1155-1168.
https://doi.org/10.1007/s00299-016-1952-8
 
89. Li Z.G., Min X., Zhou Z.H. 2016b. Hydrogen sulfide: A signal molecule in plant cross-adaptation. Front. Plant Sci. 7 : 1621.
https://doi.org/10.3389/fpls.2016.01621
 
90. Li H., Li M., Wei X., Zhang X., Xue R., Zhao Y., Zhao H. 2017. Transcriptome analysis of drought respon-sive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Mol.Genet. Genom. 292 (5) : 1091-1110. 
https://doi.org/10.1007/s00438-017-1330-4
 
91. Liang X., Zhang L., Natarajan S.K., Becker D.F. 2013. Proline mechanisms of stress survival. Antioxid. Redox Signal. 19 : 998-1011.
https://doi.org/10.1089/ars.2012.5074
 
92. Lombardi L., Sebastian, L. 2015. Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci. 168 : 797-802.
https://doi.org/10.1016/j.plantsci.2004.10.012
 
93. Lozano-Juste J., Colom-Moreno R., Leon J. 2011. In vi-vo pro-tein tyrosine nitration in Arabidopsis thali-ana. J. Exp. Bot. 62 : 3501-3517.
https://doi.org/10.1093/jxb/err042
 
94. Martinez-Domínguez D., de las Heras M.A., Navarro F., Torronteras R., Cordob F. 2008. Efficiency of anti-oxidant response in Spartina densiflora: An adapta-tive success in a polluted environment. Environ. Exp. Bot. 62 : 69-77.
https://doi.org/10.1016/j.envexpbot.2007.07.005
 
95. Metwally A., Finkemeier I., Georgi M., Dietz K.J. 2003. Salicylic acid allevi-ates the cadmium toxicity in barley seedlings. Plant Physiol. 132 : 272-281.
https://doi.org/10.1104/pp.102.018457
 
96. Miller E.W., Dickinson B.C., Chang C.J. 2010. Aqua-porin-3 mediates hy-drogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. USA. 107 : 15681-15686.
https://doi.org/10.1073/pnas.1005776107
 
97. Mishra S., Dubey R.S. 2006. Inhibition of ribonuclease and protease activities in arsenic exposed rice seed-lings: role of proline as enzyme protectant. J. Plant Physiol. 163 : 927-936.
https://doi.org/10.1016/j.jplph.2005.08.003
 
98. Nasiri-Savadkoohi S., Saeidi-Sar S., Abbaspour, H., Dehpour, A.A. 2017. Protective role of exogenous nitric oxide against zinc toxicity in Plantago major L. Appl. Ecol. Environment. Res. 15 (4) : 511524.
https://doi.org/10.15666/aeer/1504_511524
 
99. Nazar R., Igbal N., Masood A., Khan M., Syeed S., Khan N. 2012. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Amer. J. Plant Sci. 3 : 1476-1489.
https://doi.org/10.4236/ajps.2012.310178
 
100. Ozfidan-Konakci C., Yildiztugay E., Elbasan F. Kucu-koduk M., Turkan I. 2020. Hydrogen sulfide (H2S) and nitric oxide (NO) alleviate cobalt toxicity in wheat (Triticum aestivum L.) by modulating photo-synthesis, chloroplastic redox and antioxidant capacity. J. Hazardous Materials. 388 : 122061.
https://doi.org/10.1016/j.jhazmat.2020.122061
 
101. Panda S.K., Chaudhury I., Khan M.H. 2003. Heavy metals induce lipid peroxidation and affect antioxi-dants in wheat leaves. Biol. Plant. 46 : 289-294.
https://doi.org/10.1023/A:1022871131698
 
102. Papadakis I.E., Chatzistathis T., Giannakoula A., Sotiropoulos T., Antonopoulou C., Therios I. 2020. Effects of Excess Manganese on Growth, Mineral Nutrition, Carbohydrates, Malondialdehyde, Hydro-gen Peroxide and Proline of Citrus Plants. In: Metal Toxicity in Higher Plants (eds: M. Landi, S.A. Shemet, V.S. Fedenko). N.Y. : Nova Science Pub-lishers : 237-252.
 
103. Pasqualini S., Meier S., Gehring C., Madeo L., Fornaciari M., Romano B., Ederli L. 2009. Ozone and nitric oxide induce cGMP-dependent and -independent transcription of defense genes in tobacco. New Phy-tol. 181 : 860-870.
https://doi.org/10.1111/j.1469-8137.2008.02711.x
 
104. Prasad S.M., Dwivedi R., Zeeshan M. 2005. Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simul-taneous exposure of nickel and UV-B stress. Photo-synthetica. 43 : 177-185.
https://doi.org/10.1007/s11099-005-0031-0
 
105. Ribera-Fonseca A., Inostroza-Blancheteau C., Cartes P., Rengel Z., Mora M.L. 2013. Early induction of Fe-SOD gene expression is involved in tolerance to Mn toxicity in perennial ryegrass. Plant Physiol. Bio-chem. 73 : 77-82.
https://doi.org/10.1016/j.plaphy.2013.08.012
 
106. Rizwan M., Mostofa M.G., Ahmad M.Z., Imtiaz M., Mehmood S., Adeel M., Dai Z., Li Z., Aziz O., Zhang Y., Tu S. 2018. Nitric oxide induces rice tolerance to excessive nickel by regulating nickel uptake, reactive oxygen species detoxification and defense-related gene expression. Chemosphere. 191 : 23-35.
https://doi.org/10.1016/j.chemosphere.2017.09.068
 
107. Roychoudhury A., Ghosh S. 2013. Physiological and biochemical responses of mungbean (Vigna radiate L. Wilczek) to varying concentrations of cadmium chloride or sodium chloride. Unique Journal of Pharmaceutical and Biological Sciences. 1 : 11-21.
 
108. Sagi M., Fluhr R. 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141 : 336-340.
https://doi.org/10.1104/pp.106.078089
 
109. Sahay S., Gupta M. 2017. An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide. 67 : 39-52.
https://doi.org/10.1016/j.niox.2017.04.011
 
110. Samuel D., Kumar T.K., Ganesh G., Jayaraman G., Yang P.W., Chang M.M., Trivedi V.D., Wang S.L., Hwang K.C., Chang D.K., Yu C. 2000. Proline in-hibits aggregation during protein refolding. Protein Sci. 9 : 344-352.
https://doi.org/10.1110/ps.9.2.344
 
111. Santino A., Taurino M., De Domenico S., Bonsegna S., Poltronieri P., Pastor V., Flors V. 2013. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep. 32 : 1085-1098.
https://doi.org/10.1007/s00299-013-1441-2
 
112. Sarwar, N., Saifullah, Malhi S.S., Zia M.H., Naeem A., Bibi S., Farid, G. 2010. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agricult. 90 : 925-937.
https://doi.org/10.1002/jsfa.3916
 
113. Scarpeci T.E., Zanor M.I., Carrillo N., Mueller Roe-ber B., Valle E.M. 2008. Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol. Biol. 66 : 361-378.
https://doi.org/10.1007/s11103-007-9274-4
 
114. Schickler H., Caspi H. 1999. Response of antioxidative enzymes to nickel and cadmium stress in hyperac-cumulator plants of the genus Alyssum. Physiol. Plant. 105 : 39-44.
https://doi.org/10.1034/j.1399-3054.1999.105107.x
 
115. Semane B., Cuypers A., Smeets K., Van B.F., Hore-mans N., Schat H., Vangronsveld J. 2007. Cadmium responses in Arabidopsis thaliana: glu-tathione me-tabolism and antioxidative defence system. Physiol. Plant. 129 : 519-528.
https://doi.org/10.1111/j.1399-3054.2006.00822.x
 
116. Shahzad B., Tanveer M., Che Z., Rehman A., Chee-ma S.A., Sharma A., Song H., Rehman S., Zhaorong D. 2018. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicol. Environ. Saf. 147 : 935-944.
https://doi.org/10.1016/j.ecoenv.2017.09.066
 
117. Shakirova F.M., Allagulova Ch.R., Maslennikova D.R., Klyuchnikova E.O., Avalbaev A.M., Bezrukova M.V. 2016. Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ. Exp. Bot. 122 : 19-28. 
https://doi.org/10.1016/j.envexpbot.2015.08.002
 
118. Sharma A., Kumar V., Kumar R., Kohli S.K., Yadav P., Kapoor D., Khan E.A, Parihar R.D., Shahzad B., Thukral A.K., Bhardwaj R. 2020. Role of plant growth regulators in ameliorating heavy metal caused oxidative stress in plants: An update. In: Metal Toxicity in Higher Plants (eds: M. Landi, S.A. Shemet, V.S. Fedenko). N.Y. : Nova Science Pub-lishers ; 117-127.
 
119. Sharma P., Dubey R.S. 2005. Modulation of nitrate re-ductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as en-zyme protectant. J. Plant Physiol. 162 : 854-864.
https://doi.org/10.1016/j.jplph.2004.09.011
 
120. Shi H., Ye T., Han N., Bian H., Liu X., Chan Z. 2015. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J. Integr. Plant Biol. 57 (7) : 628-640. 
https://doi.org/10.1111/jipb.12302
 
121. Sihag S., Brar B., Joshi U.N. 2019. Salicylic acid induces amelioration of chromium toxicity and affects an-tioxidant enzyme activity in Sorghum bicolor L. Int. J. Phytoremed.
https://doi.org/10.1080/15226514.2018.1524827
 
122. Singh S., Parihar P., Singh R., Singh V.P., Prasad S.M. 2016. Heavy metal tolerance in plants: Role of tran-scriptomics, proteomics, metabolomics, and ionom-ics. Front. Plant Sci. 6 : 1143.
https://doi.org/10.3389/fpls.2015.01143
 
123. Singh H., Singh N.B., Singh A., Hussain I., Yadav V. 2017. Oxidative stress induced by lead in Vigna ra-diata L. seedling attenuated by exogenous nitric ox-ide. Tropical Plant Res. 4 (2) : 225-234.
https://doi.org/10.22271/tpr.2017.v4.i2.031
 
124. Sirhindi G., Mir M.A., Abd-Allah E.F., Ahmad P., Gucel S. 2016. Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in glycine max under nickel toxicity. Front. Plant Sci. 7 : 591.
https://doi.org/10.3389/fpls.2016.00591
 
125. Talarek-Karwel M., Bajguz A., Piotrowska-Niczypo-ruk A. 2019. 24-Epibrassinolide modulates primary metabolites, antioxidants, and phytochelatins in Acutodesmus obliquus exposed to lead stress. J. Appl. Phycol. 
https://doi.org/10.1007/s10811-019-01966-8
 
126. Tewari R.K., Hahn E.J., Paek K.Y. 2008. Function of nitric oxide and super-oxide anion in the adventi-tious root development and antioxidant defence in Panax ginseng. Plant Cell Rep. 27 : 563-573.
https://doi.org/10.1007/s00299-007-0448-y
 
127. Treutter D. 2006. Significance of flavonoids in plant re-sistance: a review. Environ. Chem. Lett. 4 : 147-157.
https://doi.org/10.1007/s10311-006-0068-8
 
128. Ulloa-Inostroza E.M., Alberdi M., Meriño-Gergichevich C., Reyes-Díaz M. 2016. Low doses of exogenous methyl jasmonate applied simultaneously with toxic aluminum improve the antioxidant performance of Vaccinium corymbosum. Plant Soil. 
https://doi.org/10.1007/s11104-016-2985-z
 
129. Valivand M., Amooaghaie R., Ahadi A. 2019. Interplay between hydrogen sulfide and calcium/calmodulin enhances systemic acquired acclimation and antioxidative defense against nickel toxicity in zucchini. Environ. Exp. Bot. 158 : 40-50. 
https://doi.org/10.1016/j.envexpbot.2018.11.006
 
130. Wang H., Ji F., Zhang Y., Hou J., Liu W., Huang J., Liang W. 2019. Interactions between hydrogen sul-phide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium tox-icity. Plant Cell Environ. 42 (8) : 2340-2356.
https://doi.org/10.1111/pce.13555
 
131. Wang L.J., Li S.H. 2006. Thermotolerance and related antioxidant enzyme activities induced by heat accli-mation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul. 48 : 137-144.
https://doi.org/10.1007/s10725-005-6146-2
 
132. Wendehenne D., Durner J., Chen Z., Klessing D.F. 1998. Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phy-tochemistry. 47 : 651-657.
https://doi.org/10.1016/S0031-9422(97)00604-3
 
133. Wood J.M. 1974. Biological cecles for toxic elemets in the environment. Science. 183 (4129) : 1049-1059.
https://doi.org/10.1126/science.183.4129.1049
 
134. Xiang C., Werner B L., Christensen E.M., Oliver D.J. 2001. The biological functions of glutathione revis-ited in Arabidopsis transgenic plants with al-tered glutathione levels. Plant Physiol. 126 : 564-574.
https://doi.org/10.1104/pp.126.2.564
 
135. Xu J., Yin H., Li Y., Liu X. 2010. Nitric oxide is associ-ated with long-term zinc tolerance in Solanum nigrum. Plant Physiol. 154 : 1319-1334.
https://doi.org/10.1104/pp.110.162982
 
136. Yadav P., Kaur R., Kumar M., Kanwar, Sharma A., Verma V., Sirhindi G., Bhardwaja R. 2018. Cas-tasterone confers copper stress tolerance by regulat-ing antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings. Ecotoxicol. Environ. Saf. 147 : 725-734.
https://doi.org/10.1016/j.ecoenv.2017.09.035
 
137. Yun B.W., Feechan A., Yin M., Saidi N.B.B., Le Bi-han T., Yu M., Moore J.W., Kang J.G., Kwon E., Kang J.G., Spoel S.H., Pallas J.A., Loake G.J. 2011. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature. 478 : 264-268.
https://doi.org/10.1038/nature10427
 
138. Zafari S., Sharifi M., Chashmi N. A., Mur L. A. 2016. Modulation of Pb-induced stress in Prosopis shoots through an interconnected network of signaling mol-ecules, phenolic compounds and amino acids. Plant Physiol. Biochem. 99 : 11-20.
https://doi.org/10.1016/j.plaphy.2015.12.004
 
139. Zhang Y., Wang L., Liu Y Zhang Q, Wei Q, Zhang W. 2006. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta. 224 : 545-555.
https://doi.org/10.1007/s00425-006-0242-z
 
140. Zhang H., Hu S.-L., Zhang Z.-J., Hu L.-Y., Jiang C.-X., Wei Z.-J., Liu J., Wang H.-L., Jiang S.-T. 2011. Hy-drogen sulfide acts as a regulator of flower senes-cence in plants. Postharvest Biology and Technolo-gy. 60 (3) : 251-257. 
https://doi.org/10.1016/j.postharvbio.2011.01.006
 
141. Zhao F.Y., Liu W., Zhang S.Y. 2009. Different respons-es of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and non-transgenic rice. J. Integr. Plant Biol. 51 (10) : 942-950.
https://doi.org/10.1111/j.1744-7909.2009.00865.x
 
142. Zhou Z.S., Guo K., Elbaz A.A., Yang Z.M. 2009. Sali-cylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Envi-ron. Exp. Bot. 65 : 27-34.
https://doi.org/10.1016/j.envexpbot.2008.06.001
 
143. Zhu Y.L., Pilon-Smits E.A.H., Jouanin L., Terry N. 1999. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119 : 73-80.
https://doi.org/10.1104/pp.119.1.73
 
144. Ziogas V., Molassiotis A., Fotopoulos V., Tanou G. 2018. Hydrogen sulfide: A potent tool in postharvest fruit biology and possible mechanism of action. Front. Plant Sci. 9 : 1375. 
https://doi.org/10.3389/fpls.2018.01375