Вісн. Харків. нац. аграрн. ун-ту. Сер. Біологія, 2019, вип. 1 (46), с. 6-22


https://doi.org/10.35550/vbio2019.01.006




УЧАСТЬ ПОЛІАМІНІВ В РЕГУЛЯЦІЇ РЕДОКС-ГОМЕОСТАЗУ У РОСЛИН


Ю. Є. Колупаєв1, 2, О. І. Кокорев1

1Харківський національний аграрний університет ім. В.В. Докучаєва
(Харків, Україна)
E-mail:
plant_biology@ukr.net
2Харківський національний університет ім. В.Н. Каразіна

(Харків, Україна)


В огляді розглядаються стрес-протекторні функції поліамінів у рослин. Коротко охарактеризовано основні шляхи їх синтезу і деградації, локалізація в рослинних клітинах. Наведено дані про зміну ендогенного вмісту поліамінів у рослин різних видів за дії стресорів різної природи. Узагальнено відомості про вплив екзогенних поліамінів, а також трансформації генами, які зумовлюють їх накопичення, на стійкість рослин до несприятливих умов середовища. Проаналізовано різні аспекти дії поліамінів у рослинних клітинах: стабілізація ними молекул білків, нуклеїнових кислот, мембранних структур, вплив на іонний гомеостаз. Особливу увагу приділено антиоксидантним ефектам поліамінів, зумовленим прямою дією як скавенджерів гідроксильних і пероксильних радикалів, а також складним впливом на ферментативну антиоксидантну систему. Розглянуто ефекти інгібування і активації поліамінами НАДФН-оксидази. Описано їх дію як джерел сигнальних молекул – активних форм кисню і оксиду азоту. Зроблено висновок, що поліаміни залучаються до різних складових редокс-регуляції у рослинних клітинах. Для пізнання механізмів їх дії актуальним залишається вивчення специфічності впливу окремих поліамінів, з'ясування їх зв'язків з іншими сигнальними посередниками, дослідження їх функціональної взаємодії зі стресовими фітогормонами.


Ключові слова: поліаміни, путресцин, спермін, спермідин, активні форми кисню, оксид азоту, антиоксидантна система, клітинний сигналінг, стійкість рослин

 


ЛІТЕРАТУРА


1. Aronova E.E., Shevyakova N.I., Stetsenko L.A., Kuznetsov Vl.V. 2005. Cadaverine-induced induction of superoxide dismutase gene expression in Mesembryanthemum crystallinum L. Dokl. Biol. Sci. 403 (1-6) : 257-259.
https://doi.org/10.1007/s10630-005-0104-z
 
2. Edreva A.M., Velikova V.B., Tsonev T.D. 2007. Phenylamides in plants. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 54 (3) : 287.
https://doi.org/10.1134/S1021443707030016
 
3. Kokorev A.I., Shvydenko N.V., Yastreb T.O., Kolupaev Yu.E. Induction of heat resistance and antioxidant enzymes of wheat seedlings by exogenous polyamines. Bull. Kharkiv Natl. Agrar. Univ. Ser. Biology (Visn. Hark. nac. agrar. univ., Ser. Biol.). 2018. 3 (45) : 85-93.
 
4. Kolupaev Yu.E., Karpets Yu.V. 2010. Formation of plants adaptive reactions to abiotic stressors influence. Kyiv : Osnova : 351 p.
 
5. Kolupaev Yu.E. 1995. Low molecular weight nitrogen compounds in plants under stress conditions: features of metabolism and possible physiological significance. Fizi-ologiya i Biokhimiya Kult. Rastenii. 25 (5/6) : 324-335.
 
6. Kuznetsov Vl.V., Radyukina N.L., Shevyakova N.I. 2006. Polyamines and stress: Biological role, metabolism, and regulation. Russ. J. Plant Physiol. (Fiziologi-ya Rastenii). 53 (5) : 583-604. Doi: org/10.1134/S1021443706050025
https://doi.org/10.1134/S1021443706050025
 
7. Paramonova N.V., Shevyakova N.I., Shorina M.V., Stetsenko L.A., Rakitin V.Yu., Kuznetsov Vl.V. 2003. The effect of putrescine on the apoplast ultrastructure in the leaf mesophyll of Mesembryanthemum crystallinum under salinity stress. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 50 (5) : 587-598. Doi: org/10.1023/A:1025623704298
https://doi.org/10.1023/A:1025623704298
 
8. Radyukina N.L. 2015. The functioning of the antioxidant system of wild plant species with short-term action of stressors. Diss. Dr. Sci. Moscow : 207 p.
 
9. Rakitin V.Y., Prudnikova O.N., Karyagin V.V., Rakitina T.Ya., Vlasov P.V., Borisova T.A., Novikova G.V., Moshkov I.E. 2008. Ethylene evolution and ABA and polyamine contents in Arabidopsis thaliana during UV-B stress. Russ. J. Plant Physiol. (Fiziologiya Rastenii) 55 (3) : 321-327. Doi: org/10.1134/S1021443708030059
https://doi.org/10.1134/S1021443708030059
 
10. Solovyan V.T. 1990. Adaptation of cells to environmental factors. Characteristic of adaptive responses. Biopolym. Cell. (Biopo-limery i Kletka). 6 (4) : 32-42. Doi.org/10.7124/bc.00027A
https://doi.org/10.7124/bc.00027A
 
11. Alcazar R., Cuevas J.C., Patron M., Altabella T., Tiburcio A.F. 2006. Abscisic acid modu-lates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol. Plant. 128 : 448-455. Doi: org/10.1111/j.1399-3054.2006.00780.x
https://doi.org/10.1111/j.1399-3054.2006.00780.x
 
12. Alcazar R., Altabella T., Marco F., Bortolotti C., Reymond M., Koncz, C., Carrasco P., Ti-burcio A.F. 2010. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta. 231 (6) : 1237-1249. Doi: 10.1007/s00425-010-1130-0
https://doi.org/10.1007/s00425-010-1130-0
 
13. Alcazar R., Bitrián M., Bartels D., Koncz C., Altabella T., Tiburcio A.F. 2011. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resur-rection plant Craterostigma plantagineum. Plant Signal. Behav. 6 (2) : 243-250. Doi: 10.4161/psb.6.2.14317
https://doi.org/10.4161/psb.6.2.14317
 
14. Andronis E.A., Moschou P.N., Toumi I., K.A. 2014. Roubelakis-angelakis, peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which af-fects respiration rate in Arabidopsis thali-ana. Front. Plant Sci. 5 : 132. Doi: 10.3389/fpls.2014.00132.
https://doi.org/10.3389/fpls.2014.00132
 
15. Bors W., Langebartels C., Michel C., Sandermann H. 1989. Polyamines as radical scavengers and protectants against ozon damage. Phytochemistry. 28 : 1589-1595.
https://doi.org/10.1016/S0031-9422(00)97805-1
 
16. Bouchereau A., Aziz A., Larher F., Martin-Tanguy J. 1999. Polyamines and environ-mental challenges: recent development. Plant Sci. 140 (2) : 103-125. Doi: org/10.1016/S0168-9452(98)00218-0
https://doi.org/10.1016/S0168-9452(98)00218-0
 
17. Cakmak T., Atici O. 2009. Effects of putres-cine and low temperature on the apoplastic antioxidant enzymes in the leaves of two wheat cultivars, Plant Soil Environ. 55 : 320-326.
https://doi.org/10.17221/1037-PSE
 
18. Campestre M.P., Bordenave C.D., Origone A.C., Menendez A.B., Ruiz O.A., Rodriguez A.A., Maiale S.J. 2011. Polyamine catabo-lism is involved in response to salt stress in soybean hypocotyls. J. Plant Physiol. 168 : 1234-1240. Doi: 10.1016/j.jplph.2011.01.007
https://doi.org/10.1016/j.jplph.2011.01.007
 
19. Cheng L., Zou Y., Ding S., Zhang J., Yu X., Cao J., Lu G. 2009. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J. Integr. Plant Biol. 51 (5) : 489-499.
https://doi.org/10.1111/j.1744-7909.2009.00816.x
 
20. Cona A., Cenci F., Cervelli M., Federico R., Mariottini P., Moreno S., Angelini R. 2003. Polyamineoxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl. Plant Phys-iol. 131 : 803-813. Doi: 10.1104/pp.011379
https://doi.org/10.1104/pp.011379
 
21. Do P.T., Drechsel O., Heyer A.G., Hincha D.K., Zuther E. 2014. Changes in free poly-amine levels, expression of polyamine bio-synthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. Front. Plant Sci. 5 : 182. Doi: 10.3389/fpls.2014.00182
https://doi.org/10.3389/fpls.2014.00182
 
22. Dobrovinskaya O.R., Muniz J., Pottosin I. 1999. Inhibition of vacuolar ion channels by polyamines. J. Membr. Biol. 167 : 127-140. Doi: org/10.1007/s002329900477
https://doi.org/10.1007/s002329900477
 
23. Echevarría-Machado I., Ku-Gonzalez A., Loyola-Vargas V.M., Hernandez-Sotomayor S.M. 2004. Interaction of spermine with a signal transduction pathway involving phos-pholipase C, during the growth of Catharanthus roseus transformed roots. Physiol. Plant. 120 : 140-151. Doi: 10.1111/j.0031-9317.2004.0212.x
https://doi.org/10.1111/j.0031-9317.2004.0212.x
 
24. Fariduddin Q., Varshney P., Yusuf M., Ah-mad A. 2013. Polyamines: potent modulators of plant responses to stress. J. Plant Interact. 8 : 1-16. Doi: org/10.1080/17429145.2012.716455
https://doi.org/10.1080/17429145.2012.716455
 
25. Ficker E., Taglialatela M., Wible B.A., Hen-ley C.M., Brown A.M. 1994. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science. 266 : 1068-1072.
https://doi.org/10.1126/science.7973666
 
26. Ghosh N., Das S.P., Mandal C., Gupta S., Das K., Dey N., Adak M.K. 2012. Variations of antioxidative responses in two rice cultivars with polyamine treatment under salinity stress. Physiol. Mol. Biol. Plants. 18 (4) : 301-313. Doi: 10.1007/s12298-012-0124-8
https://doi.org/10.1007/s12298-012-0124-8
 
27. Gill S.S., Tuteja N. 2010. Polyamines and abiotic stress tolerance in plants. Plant Sig-nal. Behav. 5 : 26-33.
https://doi.org/10.4161/psb.5.1.10291
 
28. Groppa M.D., Benavides M.P. 2008. Polyam-ines and abiotic stress: recent advances. Amino Acids. 34 (1) : 35-45. Doi: 10.1007/s00726-007-0501-8
https://doi.org/10.1007/s00726-007-0501-8
 
29. Gupta K., Dey A., Gupta B. 2013. Plant poly-amines in abiotic stress responses. Acta Physiol. Plant. 35 : 2015-2036. Doi: 10.1007/s11738-013-1239-4
https://doi.org/10.1007/s11738-013-1239-4
 
30. Ha H.C., Sirisoma N.S., Kuppusamy P., Zweier J.L., Woster P.M., Casero R.A.Jr. 1998. The natural polyamine spermine func-tions directly as a free radical scavenger. Proc. Natl. Acad. Sci. USA. 95 : 11140-11145.
https://doi.org/10.1073/pnas.95.19.11140
 
31. Hamdani S., Yaakoubi H., Carpentier R.J. 2011. Polyamines interaction with thylakoid proteins during stress. Photochem. Photobi-ol. B. 104 : 314-319. Doi: 10.1016/j.jphotobiol.2011.02.007
https://doi.org/10.1016/j.jphotobiol.2011.02.007
 
32. Hao Y., Huang B., Jia D., Mann T., Jiang X., Qiu Y., Niitsu M., Berberich T., Kusano T., Liu T. 2018. Identification of seven polyam-ine oxidase genes in tomato (Solanum lyco-persicum L.) and their expression profiles under physiological and various stress con-ditions. J. Plant Physiol. 228 : 1-11. Doi: 10.1016/j.jplph.2018.05.004.
https://doi.org/10.1016/j.jplph.2018.05.004
 
33. Hussain S.S., Ali M., Ahmad M., Siddique K.H.M. 2011. Polyamines: Natural and engi-neered abiotic and biotic stress tolerance in plants. Biotechnol. Adv. 29 (3) : 300-311. Doi: 10.1016/j.biotechadv.2011.01.003
https://doi.org/10.1016/j.biotechadv.2011.01.003
 
34. Kasukabe Y., He L., Nada K., Misawa S., Iha-ra I., Tachibana S. 2004. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol. 45 (6) : 712-722.
https://doi.org/10.1093/pcp/pch083
 
35. Kasukabe Y., He L., Watakabe Y., Otani M., Shimada T., Tachibana S. 2006. Improve-ment of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol. 23 : 75-83. Doi; org/10.5511/plantbiotechnology.23.75
https://doi.org/10.5511/plantbiotechnology.23.75
 
36. Kaur-Sawhney R., Tiburcio A. F., Altabella T., Gals¬ton A.W. 2003. Polyamines in plants: An overview. J. Cell Mol. Biol. 2 : 1-12.
 
37. Khlestkina E.K. 2013. The adaptive role of flavonoids: emphasis on cereals. Cereal Res. Commun. 41 : 185-198. Doi: org/10.1556/CRC.2013.0004
https://doi.org/10.1556/CRC.2013.0004
 
38. Khosrowshahi Z.T., Slehi-Lisar S.Y., Ghassemi-Golezani K., Motafakkerazad R. 2018. Physiological responses of safflower to exogenous putrescine under water deficit. J. Stress Physiol. Biochem. 14 (3), pp. 38-48.
 
39. Kolupaev Yu.E., Karpets Yu.V., Dmitriev A.P. 2015. Signal mediators in plants in re-sponse to abiotic stress: calcium, reactive oxygen and nitrogen species. Cytol. Genet. 49 (5) 338-348. Doi: org/10.3103/S0095452715050047.
https://doi.org/10.3103/S0095452715050047
 
40. Kumar R.R. Singh G.P., Sharma S.K, Singh K., Goswami S., Rai R.D. 2012. Molecular cloning of HSP17 gene (sHSP) and their dif-ferential expression under exogenous pu-trescine and heat shock in wheat (Triticum aestivum), Afr. J. Biotechnol. 11 : 16800-16808.
 
41. Kuznetsov Vl.V., Shevyakova N.I. 2011. Polyamines and plant adaptation to saline environment. In: Desert Plants. Biology and Biotechnology. Ed. Ramawat K.B. Berlin, Heidelberg: Springer : 261-297. Doi: org/10.1007/978-3-642-02550-1_13
https://doi.org/10.1007/978-3-642-02550-1_13
 
42. Liu T., Kim D.W., Niitsu M., Berberich T., Kusano T. 2014. Oryza sativa polyamine ox-idase 1 back-converts tetraamines, spermine and thermospermine, to spermidine. Plant Cell Rep. 33 (1) :143-151. Doi: 10.1007/s00299-013-1518-y
https://doi.org/10.1007/s00299-013-1518-y
 
43. Mellidou I., Karamanoli K., Beris D., Har-alampidis K., Constantinidou H.A., Rou-belakis-Angelakis K.A. 2017. Underexpres-sion of apoplastic polyamine oxidase im-proves thermotolerance in Nicotiana taba-cum. J. Plant Physiol. 218 : 171-174. Doi: 10.1016/j.jplph.2017.08.006
https://doi.org/10.1016/j.jplph.2017.08.006
 
44. Minocha R., Majumdar R., Minocha S.C. 2014. Polyamines and abiotic stress in plants: a complex relationship. Front. Plant Sci. 5 : 175. Doi: 10.3389/fpls.2014.00175
https://doi.org/10.3389/fpls.2014.00175
 
45. Mittler R. 2002. Oxidative stress, antioxi-dants and stress tolerance. Trends Plant Sci. 7 : 405-410. Doi: 10.1016/S1360-1385(02)02312-9
https://doi.org/10.1016/S1360-1385(02)02312-9
 
46. Mostofa M.G., Yoshida N., Fujita M. 2014. Spermidine pretreatment enhances heat tol-erance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regul. 73 (1) : 31-44. Doi: org/10.1007/s10725-013-9865-9
https://doi.org/10.1007/s10725-013-9865-9
 
47. Murkowski A. 2001. Heat stress and spermi-dine: effect on chlorophyll fluorescence in tomato plants. Biol. Plant. 44 (1) : 53-57. Doi: org/10.1023/A:1017966203859
https://doi.org/10.1023/A:1017966203859
 
48. Nayyar H., Kaur S., Singh K.J., Dhir K.K., Bains T. 2005. Water stress-induced injury to reproductive phase in chickpea: evalua-tion of stress sensitivity in wild and cultivat-ed species in relation to abscisic acid and polyamines. J. Agron. Crop Sci. 191 (6) : 450-457. Doi: org/10.1111/j.1439-037X.2005.00184.x
https://doi.org/10.1111/j.1439-037X.2005.00184.x
 
49. Nayyar H., Chander S. 2004. Protective ef-fects of polyamines against oxidative stress induced by water and cold stress in chick-pea. J. Agron. Crop Sci. 190 : 355-365. Doi: org/10.1111/j.1439-037X.2004.00106.x
https://doi.org/10.1111/j.1439-037X.2004.00106.x
 
50. Ozgur R., Uzilday B., Sekmen A.H., Turkan I. 2013. Reactive oxygen species regulation and antioxidant defence in halophytes. Funct. Plant Biol. 40 : 832-847. Doi:10.1071/FP12389
https://doi.org/10.1071/FP12389
 
51. Pal M., Szalai G., Janda T. 2015. Specula-tion: Polyamines are important in abiotic stress signaling. Plant Sci. 237 : 16-23. Doi: 10.1016/j.plantsci.2015.05.003
https://doi.org/10.1016/j.plantsci.2015.05.003
 
52. Palavan-Unsal N., Arisan D. 2009. Nitric ox-ide signalling in plants. Bot Rev. 75 : 203-229. Doi: org/10.1007/s12229-009-9031-2
https://doi.org/10.1007/s12229-009-9031-2
 
53. Pang X.M., Zhang Z.Y., Wen X.P., Ban Y., Moriguchi T. 2007. Polyamines, all-purpose players in response to environment stresses in plants. Plant Stress. 1 (2) : 173-188.
 
54. Peynevandi K.M., Razavi S.M., Zahri S. 2018. The ameliorating effects of polyamine supplement on physiological and biochemi-cal parameters of Stevia rebaudiana Bertoni under cold stress. Plant Production Sci. 21 (2) : 123-131. Doi: org/10.1080/1343943X.2018.1437756
https://doi.org/10.1080/1343943X.2018.1437756
 
55. Pottosin I., Shabala S. 2014. Polyamines con-trol of cation transport across plant mem-branes: implications for ion homeostasis and abiotic stress signaling. Front. Plant Sci. 5 : 154. Doi: 10.3389/fpls.2014.00154
https://doi.org/10.3389/fpls.2014.00154
 
56. Pottosin I., Velarde-Buendia A.M., Bose J., Fuglsang A.T., Shabala S. 2014. Polyamines cause plasma membrane depolarization, ac-tivate Ca2+-, and modulate H+-ATPase pump activity in pea roots. J. Exp. Bot. 65 : 2463-2472. Doi: 10.1093/jxb/eru133
https://doi.org/10.1093/jxb/eru133
 
57. Prabhavathi V.R., Rajam V.R. 2007. Polyam-ine accumulation in transgenic eggplant en-hances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol. 24 (3) : 273-282. Do: org/10.5511/plantbiotechnology.24.273
https://doi.org/10.5511/plantbiotechnology.24.273
 
58. Rosales E.P., Iannone M.F., Groppa M.D., Benavides M.P. 2011. Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiol. Biochem. 49 (2) : 124-130. Doi: 10.1016/j.plaphy.2010.10.009.
https://doi.org/10.1016/j.plaphy.2010.10.009
 
59. Roychoudhury A., Basu S., Sengupta D.N. 2011. Amelioration of salinity stress by ex-ogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J. Plant Physiol. 168 : 317-328. Doi: 10.1016/j.jplph.2010.07.009
https://doi.org/10.1016/j.jplph.2010.07.009
 
60. Sagor G.H., Berberich T., Takahashi Y., Niitsu M., Kusano T. 2013. The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expres-sion of heat shock-related genes. Transgenic Res. 22 (3) : 595-605. Doi: 10.1007/s11248-012-9666-3
https://doi.org/10.1007/s11248-012-9666-3
 
61. Saha J., Brauer E.K., Sengupta A., Popescu S.C., Gupta K., Gupta B. 2015. Polyamines as redox homeostasis regulators during salt stress in plants. Front. Environ. Sci. 3 : 21. Doi: org/10.3389/fenvs.2015.00021
https://doi.org/10.3389/fenvs.2015.00021
 
62. Sakamoto A., Murata N. 2002. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ. 25 : 163-171.
https://doi.org/10.1046/j.0016-8025.2001.00790.x
 
63. Scoccianti V., Torrigiani P., Bagni N. 1991. Occurrence of diamine oxidase activity in protoplasts and isolated mitochondria of He-lianthus tuberosus tuber. J. Plant Physiol. 138 : 752-756.
https://doi.org/10.1016/S0176-1617(11)81327-1
 
64. Shen W., Nada K., Tachibana S. 2000. In-volvement of polyamines in the chilling tol-erance of cucumber cultivars. Plant Physiol. 124 : 431-439. Doi: org/10.1104/pp.124.1.431
https://doi.org/10.1104/pp.124.1.431
 
65. Shi H., Chan Z. 2014. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J. Integr. Plant Biol. 56 (2) : 114-121. Doi: 10.1111/jipb.12128
https://doi.org/10.1111/jipb.12128
 
66. Suzuki N. 2015. ROS as key players of abi-otic stress responses in plants. In: Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Eds. Gupta D.K. et al. Switzerland: Springer International Publish-ing: 57-82. Doi: 10.1007/978-3-319-20421-5_3
https://doi.org/10.1007/978-3-319-20421-5_3
 
67. Szalai G., Pap M., Janda T. 2009. Light-induced frost tolerance differs in winter and spring wheat plants. J. Plant Physiol. 166 : 1826-1831. Doi: 10.1016/j.jplph.2009.04.016
https://doi.org/10.1016/j.jplph.2009.04.016
 
68. Takahashi T., Kakehi J. 2010. Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann. Bot. 105 (1) : 1-6. Doi: 10.1093/aob/mcp259
https://doi.org/10.1093/aob/mcp259
 
69. Tanou G., Ziogas V., Belghazi M., Christou A., Filippou P., Job D., Fotopoulos V., Mo-lassiotis A. 2014. Polyamines reprogram ox-idative and nitrosative status and the prote-ome of citrus plants exposed to salinity stress. Plant Cell Environ. 37 (4) : 864-885. Doi: 10.1111/pce.12204
https://doi.org/10.1111/pce.12204
 
70. Tiburcio A.F., Altabella T., Bitrián M., Alca-zar R. 2014. The roles of polyamines during the lifespan of plants: from development to stress. Planta. 240 (1) : 1-18. Doi: 10.1007/s00425-014-2055-9
https://doi.org/10.1007/s00425-014-2055-9
 
71. Todorova D., Katerova Z., Sergiev I., Alex-ieva V. 2013. Role of polyamines in alleviat-ing salt stress. In: Ecophysiology and Re-sponses of Plants under Salt Stress, vol. 13. Eds Ahmad P., Azooz M.M., Prasad M.N.V. New York: Springer : 355-379. Doi: org/10.1007/978-1-4614-4747-4_13
https://doi.org/10.1007/978-1-4614-4747-4_13
 
72. Tun N.N., Santa-Catarina C., Begum T., Sil-veira V., Handro W., Floh E.I., Scherer G.F. 2006. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol. 47 (3) : 346-354.
https://doi.org/10.1093/pcp/pci252
 
73. Wen X., Moriguchi T. 2015. Role of polyam-ines in stress response in horticultural crops. In: Abiotic Stress Biology in Horticultural Plants. Eds. Kanayama Y., Kochetov A. Ja-pan : Springer : 35-45. Doi: org/10.1007/978-4-431-55251-2_3
https://doi.org/10.1007/978-4-431-55251-2_3
 
74. Wi S., Kim W.T., Park K.Y. 2006. Overex-pression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in-transgenic tobacco plants. Plant Cell Rep. 25 : 1111-1121. Doi: 10.1007/s00299-006-0160-3
https://doi.org/10.1007/s00299-006-0160-3
 
75. Wimalasekera R., Tebartz F., Scherer G.F. 2011. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and bio-tic stresses. Plant Sci. 181 (5) : 593-603. Doi: 10.1016/j.plantsci.2011.04.002
https://doi.org/10.1016/j.plantsci.2011.04.002
 
76. Yang B., Wu J., Gao F., Wang J., Su G. 2014. Polyamine-induced nitric oxide generation and its potential requirement for peroxide in suspension cells of soybean cotyledon node callus. Plant Physiol. Biochem. 79 : 41-47. Doi: 10.1016/j.plaphy.2014.02.025
https://doi.org/10.1016/j.plaphy.2014.02.025
 
77. Yang H., Shi G., Wang H., Xu Q. 2010. In-volvement of polyamines in adaptation of Potamogeton crispus L. to cadmium stress. Aquat Toxicol. 100 (3) : 282-288. Doi: 10.1016/j.aquatox
https://doi.org/10.1016/j.aquatox.2010.07.026