Вісн. Харків. нац. аграрн. ун-ту. Сер. Біологія, 2019, вип. 2 (47), с. 6-22


https://doi.org/10.35550/vbio2019.02.006




ВІДДАЛЕНІ ГЕНЕТИЧНІ НАСЛІДКИ ВПЛИВУ РАДІАЦІЇ НА ОРГАНІЗМИ


Р. А. Якимчук

Уманський державний педагогічний університет ім. Павла Тичини
(Умань, Україна)


Радіонуклідне забруднення біосфери набуло глобального характеру, досягаючи в окремих регіонах критичних рівнів. Численні дані свідчать про те, що сучасні уявлення радіаційної генетики неспроможні забезпечити прогноз усіх негативних наслідків впливу мутагену на організми. Віддалені генетичні наслідки дії радіації включають багаторівневу систему відповідних реакцій, що перебувають у складних причинно-наслідкових зв’язках, які важко передбачити. Опромінення у високих дозах спричиняє виникнення апоптозу, що призводить до загибелі пошкоджених клітин і компенсаторної проліферації тканини. При опроміненні в низьких дозах генетичні порушення можуть зберігатися і призводити до віддалених наслідків – зростання спадкової мінливості, зниження імунітету й адаптивних можливостей організмів, онкопатології, ослаблення потомства та підвищення їх смертності, пришвидшення старіння, зміни статевої пропорції в популяціях, віддаленої клітинної та ембріональної загибелі, геномної нестабільності, репродуктивної дисфункції, зміни радіочутливості. Пострадіаційна генетична нестабільність виявляється через декілька клітинних поколінь передачею потенційних пошкоджень генетичного матеріалу і може бути індукована завдяки механізму «ефекту свідка». Припускають, що нестабільність геному пов’язана із зниженням ефективності репаративного синтезу ДНК, а також виснаженням антиоксидантного потенціалу клітини. Генотипна і фенотипова варіабельність зростає не лише в результаті дії радіації, але й інших стресових чинників, що дозволяє надати універсальної, загальнобіологічної значущості подібним перебудовам геному. Радіоадаптація може бути зумовлена ініціацією малими дозами опромінення репарації пошкоджень ДНК, що можуть спричиняти репродуктивну загибель клітин. Також радіоадаптація може бути пов’язана з генетично детермінованими процесами, що призводять до репопуляційного заміщення пошкоджених чи загиблих клітин. Рівень виявлених адаптивних реакцій в органах і тканинах опромінених організмів спрямований лише на виживання окремих особин, а не на процвітання популяції в умовах підвищеної радіоактивності середовища існування. Вивчення механізмів, які дозволять зрозуміти мутаційні процеси, що виникають у віддалені строки після опромінення, відкриває нові можливості для розуміння віддалених генетичних наслідків і адаптивних процесів на стресові впливи за дії хімічних чинників. Підкреслено необхідність систематичного проведення генетичного моніторингу на територіях, що зазнали техногенного забруднення мутагенними чинниками за використання чутливих і надійних методів біотестування з врахуванням фенотипових, цитогенетичних і молекулярно-генетичних спадкових змін у низці прийдешніх поколінь.


Ключові слова: генетичні наслідки, низькі дози, системи репарації, мутаційний тягар, нестабільність геному, гормезис, ефект свідка, радіоадаптація

 


ЛІТЕРАТУРА



1. Abramov V.I., Rubanovich A.V., Shevchenko V.A. 2005. Genetic effects of low doses of chronic exposure of emerging seeds. Genetics (Genetica). 41(9) : 1244-1250.
https://doi.org/10.1007/s11177-005-0194-6
 
2. Akleev A.V. 2009. Tissue response to chronic exposure to ionizing radiation. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 49 (1) : 5-20.
 
3. Andreev S.G., Eidelman, Yu.A., Salnikov I.V., Slanina S.V. 2013. Prediction of the dose-effect relationship for radiation-induced chromosomal instability. Russ. J. Reports of the Academy of Sciences. (Dokladyi akademii nauk). 451 (1) : 98-102.
https://doi.org/10.1134/S1607672913040017
 
4. Antonova E.V., Pozolotina V.N., Karimullina E.M. 2009. Consequences of chronic radiation effects on the flora of the East Ural radioactive trace. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 49 (1) : 97-106.
 
5. Akhmatulina N.B. 2005. Long-term effects of radiation and induced genomic instability. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 5 (6) : 680-687.
 
6. Belousov M.V., Mashkina O.S., Popov V.N. 2010. Effect of lead nitrate on cytogenetic parameters of Scots pine. Bulletin of the Voronezh State University. Ser. Chemistry, Biology, Pharmacy. (Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya himiya, biologiya, farmatsiya). 2 : 61-66.
 
7. Bittueva M.M., Abilev S.K., Tarasov V.A. 2007. The effectiveness of the prediction of carcinogenic activity of chemical compounds when considering somatic mutations in soybean Glycine max (L.) Merrill. Genetics (Genetica). 43 (1) : 78-87.
https://doi.org/10.1134/S1022795407010103
 
8. Burdenyuk-Tarasevich L.A. 2011. Long-term effects of chronic irradiation of plants T. aestivum L. in the exclusion zone of ChNPP in 1986-1987. Factors of experimental evolution of organisms. (Factory eksperimentalnoi evolutsii organismov). 10 : 90-93.
 
9. Burdenyuk-Tarasevich L.A., Lozinsky M.V., Dubova O.A. 2015. Features of the formation of stem length in winter wheat selection numbers, depending on their genotypes and conditions of cultivation. Agrobiology. (Ahrobiolohiya). 1 : 11-15.
 
10. Bychkovskaya I.B., Guiliano N.Ya., Fedortseva R.F., Bedcher F.S. 2005. On a special form of radio-induced genome instability. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 45 (6) : 688-693.
 
11. Vorobtsova I.E. 2016. Before and after the Chernobyl accident (memories, research, hypotheses). Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 56 (3) : 231-236.
 
12. Vorobtsova I.E. 2006. Transgenerational transfer of radiation-induced genome instability. Radiation Biology. Radioecology (Radiationnaya Biologiya. Radioecologiya). 46 (4) : 441-446.
 
13. Geras'kin S.A., Mozolin E.M., Dikarev V.G. 2009. Cytogenetic effects in populations of Koeleria gracilis Pers. from the territory of the Semipalatinsk test site. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 49 (2) : 147-157.
 
14. Geras'kin S.A., Fesenko S.V., Aleksakhin R.M. 2006. The impact of the accidental release of the Chernobyl NPP on biota. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 46 (2) : 178188.
 
15. Grigorkina E.B. 2010. Effects of low doses: an adaptive response in rodents (Ellobius talpinus Pall.) living in a radionuclide-contaminated environment. Russ. J. Reports of the Academy of Sciences. (Dokladyi akademii nauk). 430 (4) : 565-567.
https://doi.org/10.1134/S001249661001014X
 
16. Grodzinsky D.M., Gudkov I.N. 2006. Radiation damage to plants in the zone of influence of the accident at the Chernobyl nuclear power plant. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 46 (2) : 189-199.
 
17. Grodzinsky DN, Gushcha M.I., Dmitrieva O.P., Kolomiets O.D., Kravets O.A. 2008. Radiobiological effects of chronic irradiation of plants in the area of influence of the Chernobyl catastrophe. Kyiv : 374 p.
 
18. Dubrova Yu.E. 2006. Genome instability among the descendants of irradiated parents. Facts and their interpretation. Genetics (Genetica) 42 (10) : 1335-1347.
https://doi.org/10.1134/S1022795406100048
 
19. Dyomina E.A., Ryabchenko N.N., Barlyak I.R. 2008. Investigation of the contribution of reparation processes to the formation of individual radiosensitivity of a person on the chromosomal level. Cytology and Genetics (Tsitologiya i Genetica). 42 (2) : 42-45.
https://doi.org/10.1007/s11956-008-2007-z
 
20. Evseeva T.I., Maistrenko T.A., Geraskin S.A., Belykh E.S. 2008. Radiation impact assessment on coenopopulations of mouse peas from a territory contaminated with radium production waste. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 48 (4) : 493-501.
 
21. Ezheva T.A., Shirokova A.V. 2012. New features of chemical mutagenesis. Russ. J. Nature. (Priroda). 10 : 32-38.
 
22. Ermakov A.V., Kostiuk S.V., Egolina N.A. 2007. Signaling between human lymphocytes after induction of the witness effect by exposure to ionizing radiation in adaptive doses. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 47 (6) : 650--657.
 
23. Zainullin V.G., Yushkova E.A. 2009. Dynamics of genotype variability in experimental populations of Drosophila melanogaster under chronic exposure to ionizing radiation. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 49 (1) : 67-71.
 
24. Zakharenko L.P., Kovalenko L.V., Perepelkina M.P., Zakharov I.K. 2006. The influence of γ-radiation on the induction of hobo-element transpositions in Drosophila melanogaster. Genetics (Genetica). 46 (6) : 763-767.).
https://doi.org/10.1134/S1022795406060056
 
25. Zvyagintseva A.V. 2014. Hazard assessment systems for atmospheric air pollution: alongside summarizing approaches. Sitem analysis and information technology in the sciences of nature and society. (Sitemnyiy analiz i informatsionnyie tehnologii v naukah o prirode i obschestve). 1-2 : 131-163.
 
26. Zoz N.N., Morozova I.S., Serebryany A.M. 2007. On the effect of the antioxidant - ambiol on the radiation adaptive response. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 47 (2) : 158-162.
 
27. Ivanovsky Yu.A. 2006. Radiation hormesis. Are low doses of ionizing radiation favorable? Bulletin of the Far Eastern branch of the Russian Academy of Sciences. (Vestnik Dalnevostochnogo otdeleniya Rossiyskoy akademii nauk). 6 : 86-91.
 
28. Igonina E.V., Marsova M.V., Abilev S.K. 2016. LUX-biosensors: screening of biologically active compounds for genotoxicity. Russ. J. Ecol. Genet. (Ekologicheskaya genetika). 14 (4) : 53-62.
https://doi.org/10.17816/ecogen14452-62
 
29. Kalchenko V.A., Abramov V.I., Rubanovich A.V. 2002. Cytogenetic effects in plant populations growing on the East-Ural radioactive trace. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 42 (6) : 745-749.
 
30. Kovaleva V.I., Bagatskaya N.V. 2013. Cytogenetic effects in peripheral blood lymphocytes of children involved in the elimination of the Chernobyl accident under the influence of mitomycin C in vitro and folic acid in vivo. Cytology and genetics (Tsitologiya i genetica). 47 (1) : 68-73.
https://doi.org/10.3103/S0095452713010039
 
31. Kozubov G.M., Taskaev A.I. 2007. Features of morphogenesis and growth processes in conifers in the area of the Chernobyl accident. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 47 (2) : 204-223.
 
32. Koterov A.N. 2014. New facts about the absence of induction of genome instability at low doses of radiation with low LET and the corresponding conclusions about the effect threshold in the report of the SCEAR-012. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 54 (3) : 309-312.
 
33. Kuzmenko M.I. 2013. Radionuclide anomaly. Kyiv : 394 p.
 
34. Mamedli S.A., Grodzinsky D.M. 2007. The role of pollination in the manifestation of radiation-induced instability of the genome in plants. Reports of the National Academy of Sciences of Ukraine. (Dopovidi Natsionalnoi akademii nauk Ukrainy). 7 : 165-170.
 
35. Minina V.I., Druzhinin V.G., Glushkov A.N., Larin S.A., Mun S.A., Volkov A.N., Golovina T.A., Akhmatyana V.R., Savchenko Y.A., Gordeyeva L.A. 2009. Quantitative characteristics of frequency of chromosomal aberrations in residents of districts with various levels of cancer incidence. Genetics (Genetica). 45 (2) : 239-246.
https://doi.org/10.1134/S1022795409020124
 
36. Mikheev A.N. 2016. Small «doses» of radiobiology. My little radiobiological faith. Kiev : 371 p.
 
37. Modorov M.V. 2014. Dose loads and allolism variability in the red vole population (Clethrionomys rutilus) from the Eastern Ural radioactive trace zone. Genetics (Genetica). 50 (2) : 181-188.
https://doi.org/10.1134/S1022795414020094
 
38. Mozolin E.M., Geraskin S.A., Minkenova K.S. 2008. Radiobiological effects in plants and animals of the Semipalatinsk test site (Kazakhstan). Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 48 (4) : 422-431.
 
39. Morgun V.V., Yakymchuk R.A. 2010. Genetic consequences of the accident at the Chernobyl NPP. Kyiv : 400 p.
 
40. Pedan L.R. 2011. Investigation of latent chromosomal instability in somatic cells of reconvalescents of acute radiation sickness suffered as a result of the Chernobyl accident. Factors of experimental evolution of organisms. (Faktory eksperymentalnoi evoliutsii orhanizmiv). 10 : 129-133.
 
41. Pelevina I.I., Aleschenko A.A., Antoshchina M.M., Ryabchenko N.I., Semenova L.P., Serebryany A.M. 2007. Individual variability in the manifestation of the adaptive response of human cells to the effects of ionizing radiation. Approaches to its definition. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 47 (6) : 658-666.
 
42. Pilinskaya M.A., Shemetun M.A., Dybsky A.M. 2011. Results of a 25-year selective cytogenetic monitoring of critical population groups in Ukraine affected by the factors of the Chernobyl accident. Ukrain. J. Factors of experimental evolution of organisms. (Faktory eksperymentalnoi evoliutsii orhanizmiv). 10 : 133-138.
 
43. Pozolotina V.N. 2003. Long-term effects of radiation on plants. Ekaterinburg : 244 p.
 
44. Pozolotina V.N., Antonova E.V., Karimullina E.M., Kharitonova O.V., Pustovalova L.A. 2009. Consequences of chronic radiation effects on the flora of the East Ural radioactive trace. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 49 (1) : 97-106.
 
45. Pyatenko V.S., Eidelman Yu.A., Khvostunov I.K., Andreev S.G. 2013. Radiation-induced instability of chromosomes under conditions of limiting the growth of descendants of irradiated cells. Russ. J. Reports of the Academy of Sciences. (Dokladyi akademii nauk). 451 (2) : 228-231.
https://doi.org/10.1134/S1607672913040066
 
46. Ryabchenko N.N., Demina E.A. 2014. Radiation-induced instability of the human genome. Problems of radiation medicine and radiobiology. (Problemy radiatsiinoi medytsyny ta radiobiolohii). 19: 48-58.
 
47. Sanamyan M.F. 2003. Assessment of the effect of irradiated pollen on the variability of the karyotype of cotton M2 plants. Genetics (Genetica). 39 (8) : 1081-1090.
 
48. Serebryanyi A.M., Aleshchenko A.V., Gotlib V.Ya. 2007. On the response of the cell population to radiation in low doses. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 47 (1) : 93-99.
 
49. Suskov I.I., Kuzmina N.S., Suskova V.S., Agadzhanyan A.V. 2008. Individual features of transgenerational genomic instability in children of the liquidators of the consequences of the Chernobyl NPP accident (cytogenetic and immunogenetic indicators). Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 48 (3) : 278-286.
 
50. Sycheva L.P., Zhurkov V.S., Rakhmanin Yu.A. 2013. Actual problems of genetic toxicology. Genetics (Genetica). 49 (3) : 293-302.
https://doi.org/10.1134/S1022795413030162
 
51. Tarakhtiy E.A., Mukhacheva S.V. 2018. Chemical and radiation pollution of the environment: effects in the cells of the blood system of small mammals. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 58 (3) : 293-304.
 
52. Timofeev-Resovskiy N.V. 1962. Some problems of radiation biogeocoenology: a report on published papers submitted to protect the degree of Dr. Biol. Sci. Sverdlovsk : 46 p.
 
53. Tronov V., Loginova M.Yu., Kramarenko I.I. 2008. Methyl nitrosurea a challenge mutagen in assessing the activity of DNA correction repair (MNU): an association with certain types of cancer. Genetics (Genetica). 44 (5) : 686-692.
https://doi.org/10.1134/S1022795408050128
 
54. Tsatsenko L.V. 2016. Genetic monitoring in agroecology. Krasnodar : 110 p.
 
55. Shevchenko V.A., Snigireva G.P. 2006. The importance of cytogenetic examination for assessing the consequences of the Chernobyl disaster. Radiation Biology. Radioecology (Radiatsionnaya Biologiya. Radioekologiya). 46 (2) : 133-139.
 
56. Eidelman Yu.A., Slanina S.V., Salnikov I.V., Andreev S.G. 2012. Analysis of the formation mechanisms of chromosomal exchange aberrations based on the reconstruction of possible ways of interaction of DNA damage. Genetics (Genetica). 48 (12) : 1427-1436.
 
57. Yablokov A.V. 2015. On the concept of population load (review). Hygiene and sanitation. (Gigiena i sanitariya). 6 : 11-15.
 
58. Yakimchuk R.Y. 2012. Genetic conditions of low-dose oprominennya in the minds of radioactive development of the middle of the world. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (27) : 6-21.
 
59. Aguilera A., Gómez-González B. 2008. Genome instability: A mechanistic view of its causes and consequences. Nat. Rev. Genet. 9 (3) : 204-217. doi: 10.1038/nrg2268
https://doi.org/10.1038/nrg2268
 
60. Aypar U., Morgan W.F., Baulch J.E. 2011. Radiation induced genomic instability: are epigenetic mechanisms the missing link? Int. J. Radiation Biol. 87 (2) : 179-191. doi: 10.3109/09553002.2010.522686
https://doi.org/10.3109/09553002.2010.522686
 
61. Byrne R.T., Klingele A.J., Cabot E.L., Schackwitz W.S., Martin J.A., Martin J., Wang Z., Wood E.A., Pennacchio C., Pennacchio L.A., Perna N. T., Battista J.R., Cox M.M. 2014. Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair. eLife. 3. doi: 10.7554/eLife.01322
https://doi.org/10.7554/eLife.01322
 
62. Chadha S., Sharma M. 2014. Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae. PLoS ONE. 9 (4) : 1-7. doi: org/10.1371/journal.pone.0094415
https://doi.org/10.1371/journal.pone.0094415
 
63. Chandhi S., Yaghoubian B., Amundson S. 2008. Global gene expression analyses of bystander and alpha particle irradiated normsl human lung fibroblasts: synchronous and differential responses. BMC Med. Genomics. 1 : 63. doi: 10.1186/1755-8794-1-63
https://doi.org/10.1186/1755-8794-1-63
 
64. Dmitriev A.P., Krizanovskaya M.S., Guscha N.I. 2005. Effects of chronicradiation on plant-pathogen interactions. Агроекол. журн. 3 : 66-69.
 
65. Esnault M.-A., Chenal C., Legue F. 2010. Ionizing radiation: Advances in plant response. Environ. Exp. Bot. 68 (3) : 231-237. doi: org/10.1016/j.envexpbot.2010.01.007
https://doi.org/10.1016/j.envexpbot.2010.01.007
 
66. Huq T., Dang Vu K., Riedl B., Bouchard J., Lacroix M. 2015. Synergistic effect of gamma (γ)-irradiation and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat (RTE) meat. Food Microbiol. 46 : 507-514. doi: org/10.1016/j.fm.2014.09.013
https://doi.org/10.1016/j.fm.2014.09.013
 
67. Ilnytskyy Y., Kovalchuk O. 2011. Non-targeted radiation effects-an epigenetic connection. Mutat. Res. 714 (1-2) : 113-125. doi: 10.1016/j.mrfmmm.2011.06.014
https://doi.org/10.1016/j.mrfmmm.2011.06.014
 
68. Karotki A.V., Baverstock K. 2012. What mechanisms/processes underlie radiation-induced genomic instability? Cell. Mol. Life Sci. 69 (20) : 3351-3360. doi: 10.1007/s00018-012-1148-5
https://doi.org/10.1007/s00018-012-1148-5
 
69. Makeen K., Suresh B. 2010. Mutagenic effectiveness and efficiency of gamma rays, sodium azide and their synergistic effects in urd bean (Vigna mungo L.). World J. Agric. Sci. 2 (6) : 234-237.
 
70. McClintock B. 1951. Chromosome organization and genic expression. Cold Spring Harbor Symposia on Quantitative Biology. 16 : 13-47.
https://doi.org/10.1101/SQB.1951.016.01.004
 
71. Morgan W.F. 2012. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiation Research. 178 (2) : AV223-AV236. doi: org/10.1667/RRAV19.1
https://doi.org/10.1667/RRAV19.1
 
72. Murnane J.P. 2012. Telomere dysfunction and chromosome instability. Mutat. Res. 730 (1-2) : 28-36. doi: 10.1016/j.mrfmmm.2011.04.008
https://doi.org/10.1016/j.mrfmmm.2011.04.008
 
73. Nowsheen S., Yang E.S. 2012. The intersection between dna damage response and cell death pathways. Exp. Oncol. 34 (3) : 243-254.
 
74. Obodovskiy I. 2015. Fundamentals of radiation and chemical safety. Amsterdam; Tokyo : 264 p.
https://doi.org/10.1016/B978-0-12-802026-5.00009-0
 
75. Presto D.L., Pierce D.A., Shimizu Y., Ron E., Mabuchi K. 2003. Dose response and temporal patterns of radiation-associated solid cancer risks. Health Physics. 85 (1) : 43-46.
https://doi.org/10.1097/00004032-200307000-00010
 
76. Pulliero A., Cao J.,Vasques L. R., Pacchierotti F. 2015. Genetic and epigenetic effects of environmental mutagens and carcinogens. BioMed Research International. 1 : ID 608054. doi: org/10.1155/2015/608054
https://doi.org/10.1155/2015/608054
 
77. Shirani Sh., Mozdarani H., Mahmoodzadeh A., Salimi M. 2015. Radio-adaptive response of peripheral blood lymphocytes following bystander effects induced by preirradiated CHO-K1 cells using the micronucleus assay. Int. J. Radiat. Res. 13 (2) : 151-156. doi: 10.7508/ijrr.2015.02.005
 
78. Specchia V., Janzen S., Marini G., Pinna M. 2017. The potential link between mobile DNA and the invasiveness of the species. J. RNAi Gene Silencing. 13 : 557-561.
 
79. Sruya R., Smith R., Seymour C. 2010. Injection of resperpine into zebrafish, prevents fish to fish communication of radiation-induced bystander signals: confirmation in vivo of a role for serotonin in the mechanism. Dose Response. 8 (3) : 317-330. doi: 10.2203/dose-response.09-043
https://doi.org/10.2203/dose-response.09-043.Saroya
 
80. Thomas G.A., Symonds P. 2016. Radiation exposure and health effects - is it time to reassess the real consequences? Clin. Oncol. 28 (4) : 231-236. doi: 10.1016/j.clon.2016.01.007
https://doi.org/10.1016/j.clon.2016.01.007
 
81. Woodhead D.S. 2003. A possible approach for the assessment of radiation effects on populations of wild organisms in radionuclide-contaminated environments? J. Environ. Radioact. 66 (1-2) : 181-213. doi: 10.1016/S0265-931X(02)00123-6
https://doi.org/10.1016/S0265-931X(02)00123-6
 
82. Yakymchuk R.A. 2018. Cytogenetic disorders in Triticum aestivum L. cells affected by radionuclide contamination of water reservoirs in the alienation zone of Chornobyl NPP. Biopolym. Cell. 34 (2) : 97-106. doi.org/10.7124/bc.000974
https://doi.org/10.7124/bc.000974