Вісн. Харків. нац. аграрн. ун-ту. Сер. Біологія, 2018, вип. 3 (45), с. 74-84


https://doi.org/10.35550/vbio2018.03.074




РОСЛИНИ РОДУ RHODODENDRON L.: КЛАСИФІКАЦІЯ, ПОШИРЕННЯ, СТІЙКІСТЬ ДО СТРЕСОВИХ ЧИННИКІВ


В. М. Катанська, Н. В. Загоскіна

Федеральна державна бюджетна установа науки
Інститут фізіології рослин ім. К.А. Тімірязєва
Російської академії наук
(Москва, Росія)


Представлені відомості про класифікацію рослин роду Rhododendron L., їх поширення, вплив на біоценози, стійкість до дії широкого спектра біотичних і абіотичних чинників. Розглянуто особливості утворення вторинних метаболітів, в тому числі фенольної природи, що мають високу біологічну активність і виступають у ролі низькомолекулярних антиоксидантів у захисті клітин від неспецифічних стресових впливів. Повідомляється про успішне використання рододендронів як продуцентів фармакологічно цінної сировини, що активно застосовується в медицині для профілактики і лікування захворювань різної етіології. Обговорюються перспективи використання культур in vitro як модельних систем для вивчення фенольного метаболізму вищих рослин, а також пошуку підходів до його регулювання. Приділено увагу мікроклональному розмноженню рододендронів та виявленню в тканинах регенерантів нових специфічних фенольних сполук, не властивих для інтактних рослин.


Ключові слова: Rhododendron, рододендрони, класифікація, поширення, біологічна активність, фенольні сполуки, флавоноїди, стрес-стійкість, культури in vitro

 


ЛІТЕРАТУРА


1. Aleksandrova M.S. 1983. In: Woody plants in nature and culture (Drevesnyye rasteniya v prirode i kul'ture). Moscow : 77-83.
 
2. Aleksandrova M.S. Rhododendrons of the USSR natural flora (Rododendrony prirodnoy flory SSSR). Moscow : 112 p.
 
3. Aleksandrova M.S. 2001. Rhododendrons (Rododendrony). Moscow : 192 p.
 
4. Butenko R.G. 1999. Biology of cells of higher plants in vitro and biotechnologies based on them (Biologiya kletok vysshikh rastenii in vitro i biotekhnologii na ikh osnove). Moscow: 160 p.
 
5. Vasil'yeva O.G., Aleksandrova M.S. 2005. Biologicheskiye osobennosti klonal'nogo razmnozheniya i regeneratsiya introdutsirovannykh vidov rododendronov v usloviyakh in vitro. Byulleten' GBS. 189 : 252-259.
 
6. Volodko I.K., Gulis A.L., Rupasova Zh.A. 2012. The main findings of introduction studies with deciduous and evergreen Rhododdendron L. in Belarus. Vestnik Vitebskogo Gos. Universiteta. 4 (70) : 37-41.
 
7. Volod'ko I.K., Rupasova Zh.A., Titok V.V. 2015. Ecological and biological basis of the introduction of rhododendrons (Rhododendron L.) in the conditions of Belarus. (Ekologo-biologicheskiye osnovy introduktsii rododendronov (Rhododendron L.) v usloviyakh Belarusi). Minsk : 269 p.
 
8. Volynets A. 2014. Phenolic compounds in plant life. (Fenol'nyye soyedineniya v zhiznedeyatel'nosti rasteniy). Minsk : 283 p.
 
9. Durmishidze S.V., Shalashvili A.G., Mzhavanadze V.V., Tsiklauri G.Ch. 1981. Flavonoids and hydroxycinnamic acids of some representatives of the wild flora of Georgia. (Flavonoidy i oksikorichnyye kisloty nekotorykh predstaviteley dikorastushchey flory Gruzii). Tbilisi : 197 p.
 
10. Zaytseva Yu.G., Novikova T.I. 2015. Conservation and propagation of Rhododendron schlippenbachii using biotechnological methods. Plant Life of Asian Russia. (Rastitel'nyy Mir Aziatskoy Rossii). 4 (20): 79-85.
 
11. Zaprometov M.N. 1993. Phenolic compounds. (Fenol'nyye soyedineniya). Moscow : 271 p.
 
12. Zaprometov M.N. 1996. Phenolic compounds and their role in plant life. (Fenol'nyye soyedineniya i ikh rol' v zhizni rasteniy. LVI Timiryazevskiye chteniya). Moscow : 45 p.
 
13. Karakulov A.V., Karpova Ye.A., Vasiliev V.G. 2018. Ecological and geographical variation of morphometric parameters and flavonoid composition of Rhododendron parvifolium. Turczaninowia. 21 (2) : 133-144.
https://doi.org/10.14258/turczaninowia.21.2.14
 
14. Kemertelidze E.P., Shalashvili K.G., Korstantia B.M., Nizharadze N.O., Chipashvili N.Sh. 2007. Therapeutic effect of phenolic compounds isolated from Rhododendron ungernii leaves. Pharm. Chem. Journal. (Khimiko-farmatsevticheskiy Zhurnal). 41 (1) : 10-13.
https://doi.org/10.1007/s11094-007-0003-8
 
15. Kolupaev Yu.E., Karpets Yu.V., Obozny A.I. Antioxidant system of plants: participation in cellular signaling and adaptation to the action of stressors. Bull. Kharkiv. Natl. Agrar. Univ. Ser. Biology. (Visnyk Kharkiv. Natsional. Agrarn. Univer. Ser. Biologiya). 1 (22) : 6-34.
 
16. Kondratovich R.Ya. 1981. Rhododendrons in the Latvian SSR. (Rododendrony v latviyskoy SSR). Riga : 330 p.
 
17. Kostina V.M. 2009. Features of phenolic metabolism of plants of the genus Rhododendron L. in vivo and in vitro. (Osobennosti fenol'nogo metabolizma rasteniy roda Rhododendron L. in vivo i in vitro). PhD Thesis. Moscow : 22 p.
 
18. Kurentsova G.E. 1968. Relict plants of Primorye. (Reliktovyye rasteniya Primor'ya). Leningrad : 71 p.
 
19. Kurkin V. A. 2007. Pharmacognosy (Farmakognoziya). Samara : 1239 p.
 
20. Men'shchikova Ye.B., Lankin V.Z., Zenkov N.K., Bondar' I.A., Krugovykh N.F., Trufakin V.A. 2006. Oxidative stress. Prooxidants and Antioxidants. (Okislitel'nyy stress. Prooksidanty i antioksidanty). Moskow : 556 p.
 
21. Mirovich V.M., Konenkina T.A., Fedoseyeva G.M. 2008. Qualitative structure of essential oil Rhododendron adamsii and Rh. parvifolium, growing in East Siberia. Sib. Med. J. (Sibirskiy Meditsinskiy Zhurnal). 1 : 79-82.
 
22. Olenichenko N.A., Zagoskina N.V., Ossipov V.I. 2006. Effect of cold hardening on the phenolic complex of winter wheat leaves. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 53 (4) : 495-500.
https://doi.org/10.1134/S1021443706040108
 
23. Rupasova J.A., Volodko I.K., Voltovich A.A., Vasileuskaya T.I., Krynitskaya N.B., Kudryashova O.A. 2012. The features of seasonal accumulation of phenolic compounds in the assimilation organs of evergreen and deciduous Rhododendron species at introduction in Belarus. Vestnik Nats. Akad. Nauk Belarusi. Ser. Biol. 3 : 5-10.
 
24. Rupasova ZhA., Volod'ko I.K., Goncharova L. 2013. Rhododendrons of Belarus (Rododendrony Belarusi). Minsk : 308 p.
 
25. Solovchenko A.E., Merzlyak M. N. Screening of visible and UV radiation as a photoprotective mechanism in plants. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 55 (6) : 719.
https://doi.org/10.1134/S1021443708060010
 
26. Tarakhovskiy Yu.S., Kim Yu.A., Abdrasilov B.S., Muzafarov Ye.N. 2013. Flavonoids: Biochemistry, Biophysics, Medicine). Flavonoidy: biokhimiya, biofizika, meditsina. Moscow : 308 p.
 
27. Takhtadzhyan A.L. 1966. System and phylogeny of flowering plants. (Sistema i filogeniya tsvetkovykh rasteniy). Moscow : 611 p.
 
28. Bagratishvili D., Jikia R. 2015. Formation of phenolic compounds in callus culture from Rhododendron Caucasicum Pall. and influence of hormonal effectors on the process. Bull. Georg. Nat. Acad. Sci. 9 (2) : 105-109.
 
29. Bedetti C.S., Modolo L.V., Isaias R.M. 2014. The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae). Biochemical Systematics and Ecology. 55 : 53-59.
https://doi.org/10.1016/j.bse.2014.02.016
 
30. Blokhina O., Virolainen E., Fagerstedt K. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91 : 179-194.
https://doi.org/10.1093/aob/mcf118
 
31. Cao Y.H., Chu Q.C., Ye J.N. 2004. Chromatographic and electrophoretic methods for pharmaceutically active compounds in Rhododendron dauricum. J. Chromat. B-anal. Tech. Biomed. Life Sci. 812 : 231-240.
https://doi.org/10.1016/j.jchromb.2004.06.048
 
32. Carocho M., Ferreira I. 2013. The role of phenolic compounds in the fight against cancer - a review. Anti-Cancer Ag. Med. Chem. 13 (8) : 1236-1258.
https://doi.org/10.2174/18715206113139990301
 
33. Chamberlain D., Hyam R., Argent G., Fairweather G., Walter K.S. 1996. The genus Rhododendron: its classification and synonymy. Edinburgh : 181 p.
 
34. Cheng X., Zhang J., Chen Z. 2017.Effects of Total Flavone from Rhododendron simsii Planch. Flower on Postischemic Cardiac Dysfunction and Cardiac Remodeling in Rats. Evidence-Based Comp. and Alternative Med. 2017 : 1-9.
https://doi.org/10.1155/2017/5389272
 
35. Cheynier V., Comte G., Davis K.M., Lattanzio V., Martens S. 2013. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 72 : 1-20.
https://doi.org/10.1016/j.plaphy.2013.05.009
 
36. Chezem W.R., Clay N.K. 2016. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. Phytochemistry. 131 : 26-43.
https://doi.org/10.1016/j.phytochem.2016.08.006
 
37. Chosson E., Chaboud A., Chulia A., Raynaud J. 1998. A phloracetophenone glucoside from Rhododendron ferrugineum. Phytochemistry. 47 : 87-88.
https://doi.org/10.1016/S0031-9422(97)00475-5
 
38. Demarco D. 2017. Histochemical analysis of plant secretory structures. Histochem. of Single Molecules. 1560 : 313-330.
https://doi.org/10.1007/978-1-4939-6788-9_24
 
39. Die J.V., Arora R., Rowland L.J. 2017. Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty behavior. PLoS One. 12 (5) : 1-17.
https://doi.org/10.1371/journal.pone.0177389
 
40. Eeckhaut T., Janssens K., Keyser De E. 2010. Micropropagation of rhododendron. Methods in Molecular Biology. 589 : 141-152.
https://doi.org/10.1007/978-1-60327-114-1_14
 
41. Emenike C.U., Jayanthi B., Agamuthu P., Fauziah S.H. 2018. Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ. Rev. 26 (2) : 156-168.
https://doi.org/10.1139/er-2017-0045
 
42. Fan C., Zhao W., Ding B., Qin G. 2001. Constituents from the leaves of Rhododendron latoucheae. Fitoterapia. 72(4) : 449-452.
https://doi.org/10.1016/S0367-326X(00)00316-6
 
43. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48 (12) : 909-930.
https://doi.org/10.1016/j.plaphy.2010.08.016
 
44. Grimbs A., Shrestha A., Rezk A.S., Grimbs S., Hakeem S.I., Schepker H., Hütt M.-T., Albach D.C., Brix K., Kuhnert N., Ullrich M.S. 2017. Bioactivity in Rhododendron: a systemic analysis of antimicrobial and cytotoxic activities and their phylogenetic and phytochemical origins. Front Plant Sci. 8 : 551-558.
https://doi.org/10.3389/fpls.2017.00551
 
45. Gоetsch L., Eckert J.A., Hall D.B. 2005. The Molecular Systematics of Rhododendron (Ericaceae): A Phylogeny Based Upon RPB2 Gene Sequences. Systematic Botany. 30 (3) : 616-626.
https://doi.org/10.1600/0363644054782170
 
46. Harborne J., Williams C. 1971. Leaf survey of flavonoids and simple phenols in the genus Rhododendron. Phytochemistry. 10 (11) : 2727-2744.
https://doi.org/10.1016/S0031-9422(00)97273-X
 
47. Heleno S.A., Martins A., Queiroz M.J.R., Ferreira I.C. 2015. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry. 173 : 501-513.
https://doi.org/10.1016/j.foodchem.2014.10.057
 
48. Hoff A. 1954. Zur Stammaesentwicklung der Gattung Rhodoendron. DRG Jahrbuch. Bremen : 42-55.
 
49. Jesionek A., Kokotkiewicz A., Wlodarska P., Zabiegala B., Bucinski A., Luczkiewicz M. 2017. Bioreactor shoot cultures of Rhododendron tomentosum (Ledum palustre) for a large-scale production of bioactive volatile compounds. Plant Cell Tissue Organ Cult. 131 (1) : 51-64.
https://doi.org/10.1007/s11240-017-1261-0
 
50. Kiruba S., Mahesh M., Nisha S., Miller P., Jeeva S. 2011. Phytochemical analysis of the flower extracts of Rhododendron arboreum Sm. ssp. nilagiricum (Zenker) Tagg. Asian Pacific J. Tropical Biomed. 1 (2) : 284-286.
https://doi.org/10.1016/S2221-1691(11)60173-1
 
51. Kron K.A., Judd W.S., Stevens P.F., Crayn D.M., Anderberg A.A., Gadek P.A., Quinn C.J., Luteyn J.L. 2002. Phylogenetic classification of Ericaceae: Molecular and morphological evidence. The Bot. Rev. 68 (3) : 335-423.
https://doi.org/10.1663/0006-8101(2002)068[0335:PCOEMA]2.0.CO;2
 
52. Lai Y., Zeng H., He M., Qian H., Wu Z., Luo Z., Xue Y., Yao G., Zhang Y. 2016. 6,8-Di-C-methyl-flavonoids with neuroprotective activities from Rhododendron fortune. Fitoterapia. 112 : 237-243.
https://doi.org/10.1016/j.fitote.2016.06.008
 
53. Lamichhane J., Bhattarai K., Shrivastava A.K., Shrestha T.M., Jain S.C. 2014. Chemical constituents of Rhododendron lepidotum from Nepal Himalayas. Chem. Natural Compounds. 50(4) : 767-769.
https://doi.org/10.1007/s10600-014-1079-5
 
54. Leung Ho-M., Wang Z.-W., Ye Z.-H., Yung K.-L., Peng X.-L., Cheungk W.-C. 2013. Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review. Pedosphere. 23 (5) : 549-563.
https://doi.org/10.1016/S1002-0160(13)60049-1
 
55. Liang J.Y., Du X.Y., Chen Y., Ma X.M., Xie R., Zhang J. 2014. Chemical constituents from leaf of Rhodoendron przewalskii. J. Chinese Med. Materials. 37 (8) : 1381-1382.
 
56. Lipscomb M.V., Nilsen E.T. 1990. Environmental and physiological factors influencing the natural distribution of evergreen and deciduous Ericaceous shrubs on northeast and southwest slopes of the southern Appalachian mountains. I Irradiance Tolerance. Amer. J. Bot. 77 : 108-115.
https://doi.org/10.1002/j.1537-2197.1990.tb13533.x
 
57. Mok S.Y., Lee S. 2013. Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for. albiflorum and their inhibitory activities against aldose reductase. Food Chemistry. 136 (2) : 969-974.
https://doi.org/10.1016/j.foodchem.2012.08.091
 
58. Mukherjee P.K., Kumar V., Mal M., Houghton P.J. 2007. Acetylcholinesterase inhibitors from plants. Phytomedicine. 14 (4) : 289-300.
https://doi.org/10.1016/j.phymed.2007.02.002
 
59. Nilsen E.T, Arora R., Upmanyu M. 2014. Thermonastic leaf movements in Rhododendron during freeze-thaw events: Patterns, functional significances, and causes. Environ. Exp. Bot. 106 : 34-43.
https://doi.org/10.1016/j.envexpbot.2014.01.005
 
60. Nosov A.M. 2012. Application of cell technologies for production of plant derived bioactive substance of plant origin. Applied Biochem. Microbiol. 48 : 609-624.
https://doi.org/10.1134/S000368381107009X
 
61. Olennikov D.N., Tankhaeva L.M. 2010. Phenolic compounds from Rhododendron dauricum from the Baikal region. Chem. Nat. Compounds. 46 (3) : 471-473.
https://doi.org/10.1007/s10600-010-9649-7
 
62. Parcha V., Yadav N., Sati A., Dobhal Y., Sethi N. 2017. Cardioprotective effect of various extract of Rhododendron arborium Sm flower on Albino rats. J. Pharmacognosy Phytochem. 6 (4) : 1703-1707.
 
63. Philipson W.R., Philipson M.N. 1973. History of Rhododendron classification. Edinb. Roy. Bot. Gard. Notes. 32 : 223-238.
 
64. Popescu R., Kopp B. 2013. The genus Rhododendron: An ethnopharmacological and toxicological review. J. Ethnopharmacology. 147 : 42-62.
https://doi.org/10.1016/j.jep.2013.02.022
 
65. Prakash D., Upadhyay G., Singh B., Dhakarey R., Kumar S., Singh K. 2007. Free-radical scavenging activities of Himalayan rhododendrons. Cur. Science. 92 : 526-531.
 
66. Qiang Y., Zhou B., Gao K. 2011. Chemical constituents of plants from the genus Rhododendron. Chemistry & Biodiversity. 8 (5) : 792-815.
https://doi.org/10.1002/cbdv.201000046
 
67. Read D.J. 1983. The biology of mycorrhiza in the Ericales. Can. J. Bot. 61 (3) : 985-1004.
https://doi.org/10.1139/b83-107
 
68. Rehder A. 1956. Manual of cultivated trees and shrubs. New York : 996 p.
 
69. Renaut J., Hausman J-F., Wisniewski M.E. 2006. Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol. Plant. 126 : 97-109.
https://doi.org/10.1111/j.1399-3054.2006.00617.x
 
70. Rotherham I.D. 2005. Invasive plants - ecology, history and perception. J. Practical Ecology and Conservation. Special Series. 4 : 52-62.
 
71. Schwery O., Onstein R.E. 2015. As old as the mountains: the radiations of the Ericaceae. New Phytol. 207 : 355-367.
https://doi.org/10.1111/nph.13234
 
72. Scott-Brown A., Gregoryb T., Farrella I.W., Stevensonac P.C. 2016. Leaf trichomes and foliar chemistry mediate defence against glasshouse thrips; Heliothrips haemorrhoidalis (Bouché) in Rhododendron simsii. Funct. Plant Biol. 43 (12) : 1170-1182.
https://doi.org/10.1071/FP16045
 
73. Shrestha A., Rezk A., Glasenapp V., Smith R., Ullrich S.M., Schepker H., Kuhner N. 2017. Comparison of the polyphenolic profile and antibacterial activity of the leaves, fruits and flowers of Rhododendron ambiguum and Rhododendron cinnabarinum. BMC Research Notes. 10 (297) : 1-11.
https://doi.org/10.1186/s13104-017-2601-1
 
74. Sosnovsky Y., Nachychko V., Prokopiv A., Honcharenko V. 2017. Leaf architecture in Rhododendron subsection Rhododendron (Ericaceae) from the Alps and Carpathian Mountains: Taxonomic and evolutionary implications. Flora. 230 : 26-38.
https://doi.org/10.1016/j.flora.2017.03.003
 
75. Stevenson J.B. 1947. The species of Rhododendron. Edinburgh : 861 p.
 
76. Swaroop A., Gupta A., Sinha A. 2005. Simulation determination of quercetin, rutin and coumaric acid in flowers of Rhododendron arboretum by HPTLC. Chromatographia. 62 (11-12) : 649-652.
https://doi.org/10.1365/s10337-005-0669-6
 
77. Takahashi H., Hirata S., Minami H., Fukuyama Y. 2001. Triterpene and flavanon glycoside from Rhododendron simsii. Phytochemistry 56(8) : 875-879.
https://doi.org/10.1016/S0031-9422(00)00493-3
 
78. Tomsone S., Gertnere D. 2003. In vitro shoot regeneration from flower and leaf explants in Rhododendron. Biol. Plant. 46(3) : 463-465.
https://doi.org/10.1023/A:1024363210872
 
79. Turunen M., Latola K. 2005. UV-B radiation and acclimation in timberline plants. Environmental. Pollution. 137(3) : 390-403.
https://doi.org/10.1016/j.envpol.2005.01.030
 
80. Valero-Aracama C., Zobayed S., Roy S., Kubota C., Kozai T. 2001. Photoautotrophic micropropagation of Rhododendron. Press Biotechnol. 18 : 385-390.
https://doi.org/10.1016/S0921-0423(01)80095-2
 
81. Verma N., Pratap A.S., Amresh G., Sahu P.K., Rao Ch.V. 2010. Anti-inflammatory and anti-nociceptive activity of Rhododendron arboretum. J. Pharmacy Res. 3 (6) : 1376-1380.
 
82. Wang X., Arora R., Horner H.T., Krebs S.L. 2008. Structural Adaptations in Overwintering Leaves of Thermonastic and Nonthermonastic Rhododendron Species. J. Amer. Soc. Hort. Sci. 133 : 768-776.
https://doi.org/10.21273/JASHS.133.6.768
 
83. Wang X., Li L., Zhao W., Zhao J., Chen X. 2017. Rhododendron aureum Georgi formed a special soil microbial community and competed with above-ground plants on the tundra of the Changbai Mountain, China. Ecol. Evolution. 7 (18) : 7503-7514.
https://doi.org/10.1002/ece3.3307
 
84. Way T.-D., Tsai S.-J., Wang C.-M., Jhan Y.-L., Ho C.-T., Chou C.-H. 2015. Cinnamtannin D1 from Rhododendron formosanum Induces Autophagy via the Inhibition of Akt/mTOR and Activation of ERK1/2 in Non-Small-Cell Lung Carcinoma Cells. J. Agric. Food Chem. 63 (48) : 10407-10417.
https://doi.org/10.1021/acs.jafc.5b04375
 
85. Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. 2002. Curr. Opin. Plant Biol. 5 : 218-223.
https://doi.org/10.1016/S1369-5266(02)00256-X
 
86. Yanqun Z., Yuan L., Schvartz C., Langlade L., Fan L. 2004. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator chois in lanping lead-zing mine area, China. Enviromental. Int. 30 (4) : 567-576.
https://doi.org/10.1016/j.envint.2003.10.012
 
87. ZhangR., Tang C., Ke C-Q., Yao S., Lin G., Ye Y. 2018. Irhodomolleins D and E, two new dimeric grayanane diterpenes with a 3-O-2′ linkage from the fruits of Rhododendron pumilum. Chinese Chemical Letters. 29 (1) : 123-126.
https://doi.org/10.1016/j.cclet.2017.07.009
 
88. Zhou X., Chen S., Wu H., Yang Y., Xu H. 2017. Biochemical and proteomics analyses of antioxidant enzymes reveal the potential stress tolerance in Rhododendron chrysanthum Pall. Biology Direct. 12(10) : 110-119.
https://doi.org/10.1186/s13062-017-0181-6
 
89. Zhou Y., Chen X. 2009. Correlation of Callus Browning and Polyphenol Oxidase and Phenolic of Rhododendron delavayi Franch. During Culture Procession. Seed. 7: 1-9.