Вісн. Харків. нац. аграрн. ун-ту. Сер. Біологія, 2018, вип. 3 (45), с. 49-73


https://doi.org/10.35550/vbio2018.03.049




ВАРІАЦІЯ СПІВВІДНОШЕННЯ ВМІСТУ ХЛОРОФІЛІВ A І B ПРИ АДАПТАЦІЇ РОСЛИН ДО ЗОВНІШНІХ ЧИННИКІВ


О. О. Сиваш, Н. Ф. Михайленко, О. К. Золотарьова

Інститут ботаніки ім. М.Г. Холодного
Національної академії наук України
(Київ, Україна)


Адаптація рослин і мікроводоростей до інтенсивності і спектрального складу падаючого світла відбувається завдяки змінам у морфології, фізіології, біохімії та структурі листків і хлоропластів. Огляд присвячений розгляду чинників, що впливають на вміст і співвідношення хлорофілів (Хл) a/b у фотосинтетичних клітинах. Залежно від рівня освітленості варіює ультраструктура хлоропластів С3-рослин: при зниженні інтенсивності світла збільшується кількість гранальних тилакоїдів і ступінь їх стекінгу. Рослини, вирощені при насичуючій інтенсивності світла, адаптовані до швидкого використання квантів сонячного світла і характеризуються високими значеннями співвідношення Хл a/b, швидкості електронного транспорту та зниженням вмісту світлозбиральних комплексів (СЗК) і Хл у фотосистемі II (ФС ІІ). С3-рослини, вирощені за низької інтенсивності світла, навпаки, компенсують обмежену кількість доступної для росту світлової енергії інтенсивним збільшенням вмісту пігментів та СЗК і зменшенням співвідношення Хл a/b. У С4-рослин, генетично адаптованих до високих інтенсивностей світла, пігментний апарат і ультраструктура хлоропластів клітин мезофілу і обкладки провідних пучків істотно відрізняються. Для перших характерна наявність великої кількості гранальних тилакоїдів при відносно невисокому співвідношенні Хл a/b (~ 3), тоді як тилакоїдна система хлоропластів у провідних пучках є переважно ламелярною з низьким вмістом Хл b (співвідношення a/b ~ 5–10). Відносний вміст Хл b у тилакоїдах визначається накопиченням пігментованих антенних білків. Родина білків СЗК включає в себе ядерно-кодовані інтегральні білки тилакоїдної мембрани, які при асоціації з основними комплексами обох фотосистем утворюють гнучку периферійну антену для збільшення поперечного перерізу поглинання світла. СЗК регулює ефективність утилізації світла і забезпечує захист від фотоокиснювального стресу. В останні роки було досягнуто значного прогресу у з'ясуванні структури, функцій і регуляторних шляхів за участю СЗК, проте багато молекулярних деталей потребує уточнення. У роботі проаналізовано сучасні знання про біогенез СЗК, починаючи від регуляції циклу взаємоперетворення Хл a → Хл b, організації пігмент-білкових комплексів до регулювання збірки і функціонування СЗК за різних умов. Гени, які контролюють ці події, є потенційними кандидатами для біотехнологічних застосувань, спрямованих на оптимізацію ефективності використання фотосинтетичних організмів.


Ключові слова: хлорофіл a, хлорофіл b, пігмент-білкові комплекси, фотосистеми, метаболізм хлорофілів, мутанти, спектрофотометричний аналіз

 


ЛІТЕРАТУРА




1. Dilung I.I., Karpitskaya V.E. 1963. Chlorophyll a photochemical oxidation in freozen solutions. DAN USSR. 152 : 367-369.
 
2. Orlov D.S., Sadovnikova L.K., Lozanovskaya I.N. 2002. Ecology and biosphere protection under chemical pollution. (Ekologiya i okhrana biosfery pri khimicheskom zagryaznenii). Moscow : 334 p.
 
3. Syvash O.O., Zolotareva E.K. 2013. Chlorophyll catabolism in plants. Bull. Kharkiv. Natl. Agrar. Univ. Ser. Biology. (Visnyk Kharkiv. Natsional. Agrarn. Univer. Ser. Biologiya). 3 (30) : 6-17.
 
4. Syvash O.O., Fomishyna R.N., Zakharova T.O., Zolotareva E.K. 2016. Chlorophyllase activity and pigment composition in leaves of forest plants of different layers of broad-leaved forest. Bull. Kharkiv. Natl. Agrar. Univ. Ser. Biology. (Visnyk Kharkiv. Natsional. Agrarn. Univer. Ser. Biologiya). 2 (38) : 75-83.
 
5. Topchiy N.M. Effect of heavy metals on photosynthesis. 2010. Fiziologiya i Biokhimiya Kult. Rastenii. 42 (2) : 95-106.
 
6. Tyutereva E.V., Voitsekhovskaja O.V. 2011. Responses of chlorophyll b-Free chlorina 3613 barley mutant to a prolonged decrease in illuminance: 1. Dynamics of chlorophyll content, growth, and productivity. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 58 (1) : 1-8.
https://doi.org/10.1134/S1021443711010225
 
7. Tyutereva E.V., Dmitrieva V.A., Voitsekhovskaja O.V. 2017. Chlorophyll b as a source of signals steering plant development. Selskokhozyajstvennaya Biologiya. 52 : 843-855.
https://doi.org/10.15389/agrobiology.2017.5.843eng
 
8. Fomishyna R.N., Syvash O.O., Zakharova T.O., Zolotar'ova O.K.. 2009. The role of chlorophyllase in adaptation of plants to light regimes. Ukrainskii Botanicheskii Zhurnal. 66 : 94-102.
 
9. Albertsson P.A. 2001. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 6 : 349-354.
https://doi.org/10.1016/S1360-1385(01)02021-0
 
10. Albertsson P.A., Andreasson E. 2004. The constant proportion of grana and stroma lamellae in plant chloroplasts. Physiol. Plant. 121 : 334-342.
https://doi.org/10.1111/j.0031-9317.2004.00315.x
 
11. Allen J.F. 1992. Protein phosphorylation in regulation of photosynthesis. Biochim. Biophys. Acta. 1098 : 275-335.
https://doi.org/10.1016/S0005-2728(09)91014-3
 
12. Allen J., Forsberg J. 2001. Molecular recognition in thylakoid structure and function. Trends Plant Sci. 6 : 317-326.
https://doi.org/10.1016/S1360-1385(01)02010-6
 
13. Allen K.D., Duysen M.E., Staehelin L.A. 1988. Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyll b-defident CD3 mutant of wheat. J. Cell Biol. 107 : 907-919.
https://doi.org/10.1083/jcb.107.3.907
 
14. Anderson J.M. 1980. Chlorophyll-protein complexes of higher plant thylakoids: distribution, stoichiometry and organization in the photosynthetic unit. FEBS Lett. 117 : 327-331.
https://doi.org/10.1016/0014-5793(80)80973-2
 
15. Anderson J.M. 1986. Photoregulation of the composition, function, and structure of thylakoid membranes. Annu. Rev. Plant Physiol. 37 : 93-136.
https://doi.org/10.1146/annurev.pp.37.060186.000521
 
16. Anderson J.M., Levine R.P. 1974. Membrane polypeptides of some higher plant chloroplasts. Biochim. Biophys. Acta. 333 : 378-387.
https://doi.org/10.1016/0005-2728(74)90020-6
 
17. Aro E.-M., Suorsa M., Rokka A., Allahverdiyeva Y., Paakkarinen V., Saleem A., Battchikova N., Rintamäki E. 2004. Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J. Exp. Bot. 56 : 347-356.
 
18. Bailey S., Walters R.G., Jansson S., Horton P. 2001. Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta. 213 : 794-801.
https://doi.org/10.1007/s004250100556
 
19. Ballottari M., Govoni C., Caffarri S., Morosinotto T. 2004. Stoichiometry of LHCI antenna polypeptides and characterization of gap and linker pigments in higher plants photosystem I. Eur. J. Biochem. 271 : 4659-4665.
https://doi.org/10.1111/j.1432-1033.2004.04426.x
 
20. Ballottari M., Dall'Osto L., Morosinotto T., Bassi R. 2007. Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J. Biol. Chem. 282 : 8947-8958.
https://doi.org/10.1074/jbc.M606417200
 
21. Barber J. 1980. Membrane surface charges and potentials in relation to photosynthesis. Biochim. Biophys. Acta. 594 : 253-308.
https://doi.org/10.1016/0304-4173(80)90003-8
 
22. Bellemare G., Bartlett S.G., Chua N.H. 1982. Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley. J. Biol. Chem. 257 : 7762-7767.
 
23. Betterle N., Ballottari M., Zorzan S., de Bianchi S., Cazzaniga S., Dall'osto L., Morosinotto T., Bassi R. 2009. Light-induced dissociation of an antenna hetero-oligomer is needed for nonphotochemical quenching induction. J. Biol. Chem. 284 : 15255-15266.
https://doi.org/10.1074/jbc.M808625200
 
24. Boekema E.J., van Roon H., Calkoen F., Bassi R., Dekker J.P. 1999. Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry. 38 : 2233-2239.
https://doi.org/10.1021/bi9827161
 
25. Bogorad L. 1976. Chlorophyll biosynthesis. In : Chemistry and Biochemistry of Plant Pigments. Academic Press, London : 64-148.
 
26. Bonente G., Pippa S., Castellano S., Bassi R., Ballottari M. 2012. Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J. Biol. Chem. 287 : 5833-5847.
https://doi.org/10.1074/jbc.M111.304279
 
27. Caffarri S., Kouřil R., Kereïche S., Boekema E., Croce R. 2009. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 28 : 3052-3063.
https://doi.org/10.1038/emboj.2009.232
 
28. Castelletti S., Morosinotto T., Robert B., Caffarri S., Bassi R., Croce R. 2003. Recombinant Lhca2 and Lhca3 subunits of the photosystem I antenna system. Biochemistry. 42 : 4226-4234.
https://doi.org/10.1021/bi027398r
 
29. Chow W.S., Melis A., Anderson J.M. 1990. Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc. Natl. Acad. Sci. USA. 7 : 7502-7506.
https://doi.org/10.1073/pnas.87.19.7502
 
30. Croce R., van Amerongen H. 2011. Light-harvesting and structural organization of Photosystem II: from individual complexes to thylakoid membrane. J. Photochem. Photobiol. B. 104 : 142-153.
https://doi.org/10.1016/j.jphotobiol.2011.02.015
 
31. Daum B., Nicastro D., Austin J.II, McIntosh J.R., Kuhlbrandt W. 2010. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell. 22 : 1299-1312.
https://doi.org/10.1105/tpc.109.071431
 
32. Dekker J.P., Boekema E.J. 2005. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta.1706 : 12-39.
https://doi.org/10.1016/j.bbabio.2004.09.009
 
33. Dittami S.M., Michel1 G., Collén J., Boyen C., Tonon T. 2010. Chlorophyll-binding proteins revisited - a multigenic family of light-harvesting and stress proteins from a brown algal perspective BMC Evolutionary. Biol. 10 : 365-379.
https://doi.org/10.1186/1471-2148-10-365
 
34. Duffy C., Valkunas L., Ruban A. 2013. Light-harvesting processes in the dynamic photosynthetic antenna. Phys. Chem. Chem. Phys. 15 : 18752-18771.
https://doi.org/10.1039/c3cp51878g
 
35. Dunn J.L., Turnbull J.D., Robinson S.A. 2004. Comparison of solvent regimes for the extraction of photosynthetic pigments from leaves of higher plants. Funct. Plant Biol. 31 : 195-202.
https://doi.org/10.1071/FP03162
 
36. Dymova O., Fiedor L. 2014. Chlorophylls and their role in photosynthesis. In: Photosynthetic Pigments: Chemical Structure, Biological Function and Ecology. Syktyvkar : 140-160.
 
37. Espineda C., Linford A., Devine D., Brusslan J. 1999. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 96 : 10507-10511.
https://doi.org/10.1073/pnas.96.18.10507
 
38. Fan D.Y., Hope A.B., Smith P.J., Jia H., Pace R.J., Anderson J.M., Chow W.S. 2007. The stoichiometry of the two photosystems in higher plants revisited. Biochim. Biophys. Acta. 1767 : 1064-1072.
https://doi.org/10.1016/j.bbabio.2007.06.001
 
39. Funk C., Adamska I., Green B.R., Andersson B., Renger G. 1995. The nuclear-encoded chlorophyll-binding photosystem II-S protein is stable in the absence of pigments. J. Biol. Chem. 270 : 30141-30147.
https://doi.org/10.1074/jbc.270.50.30141
 
40. Galka P., Santabarbara S., Khuong T.T.H., Degand H., Morsomme P., Jennings R.C., Boekema E.J., Caffarri S. 2012. Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II. Plant Cell. 24 : 2963-2978.
https://doi.org/10.1105/tpc.112.100339
 
41. Ganeteg U., Klimmek F., Jansson S. 2004. Lhca5- an LHC-type protein associated with photosystem I. Plant Mol. Biol. 54 : 641-651.
https://doi.org/10.1023/B:PLAN.0000040813.05224.94
 
42. Genge S., Pilger D., Hiller R.G. 1974. The relationship between chlorophyll b and pigment-protein complex II. Biochim. Biophys. Acta. 347 : 22-30.
https://doi.org/10.1016/0005-2728(74)90196-0
 
43. Ghirardi M.L., Melis A. 1983. Localization of photosynthetic electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays. Arch. Biochem. Biophys. 224 : 19-28.
https://doi.org/10.1016/0003-9861(83)90186-8
 
44. Ghirardi M.L., McCauley S.W., Melis A. 1986. Photochemical apparatus organization in the thylakoid membrane of Hordeum vulgare wild type and chlorophyll b-less chlorina f2 mutant. Biochim. Biophys. Acta. 851 : 331-339.
https://doi.org/10.1016/0005-2728(86)90069-1
 
45. Goodchild D.J., Bjorkman O., Pyliotis N.A. 1972. Chloroplast ultrastructure, leaf anatomy, and content of chlorophyll and soluble protein in rainforest species. Carnegie Inst. Wash. 71: 102-107.
 
46. Harrison M. A., Nemson J. A., Melis A. 1993. Assembly and composition of the chlorophyll a-b light-harvesting complex of barley (Hordeum vulgare L.): Immunochemical analysis of chlorophyll b-less and chlorophyll b-deficient mutants. Photosynth. Res. 1993. 38 : 141-151.
https://doi.org/10.1007/BF00146413
 
47. Hiraishi A., Shimada K. 2001. Aerobic anoxygenic bacteria with zinc-bacteriochlorophyll. J Gen. Appl. Microbiol. 47 : 161-180.
https://doi.org/10.2323/jgam.47.161
 
48. Hirashima M., Satoh S., Tanaka R., Tanaka A. 2006. Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. J. Biol. Chem. 281 : 15385-15393.
https://doi.org/10.1074/jbc.M602903200
 
49. Hopkins M., Taylor C., Liu Z., Ma F., McNamara L., Wang T., Thompson J.E. 2007. Regulation and execution of molecular disassembly and catabolism during senescence. New Phytol. 175 : 201-214.
https://doi.org/10.1111/j.1469-8137.2007.02118.x
 
50. Horie Y., Ito H., Kusaba M., Tanaka R., Tanaka A. 2009. Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J. Biol. Chem. 284 : 17449-17456.
https://doi.org/10.1074/jbc.M109.008912
 
51. Hynnien P.H., Ellfok N. 1973. Chlorophylls I. Separation and isolation Chlorophylls a and b by multiple liquid-liquid partition. Acta Chem. Scand. 27 : 1463-1477.
https://doi.org/10.3891/acta.chem.scand.27-1463
 
52. Ito H., Tanaka A. 1996. Determination of the activity of chlorophyll b to chlorophyll a conversion during greening of etiolated cucumber cotyledons by using pyrochlorophyllide b. Plant Physiol. Biochem. 34: 35-40.
 
53. Jackowski G., Kacprzak K., Jansson S. 2001. Identification of Lhcb1/Lhcb2/Lhcb3 Heterotrimers of the main light-harvesting chlorophyll a/b-protein complex of photosystem II (LHC II). Biochim. Biophys. Acta. 1504 : 340-345.
https://doi.org/10.1016/S0005-2728(00)00262-0
 
54. Jansson S. 1999. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci. 4 : 236-240.
https://doi.org/10.1016/S1360-1385(99)01419-3
 
55. Jenkins C.L.D., Boag S. 1985. Isolation of bundle sheath cell chloroplasts from the NADP-ME type C4 plant Zea mays. Plant Physiol. 79 : 84-89.
https://doi.org/10.1104/pp.79.1.84
 
56. Karcz D., Boroń B., Matwijczuk A., Furso J., Staroń J., Ratuszna A., Fiedor L. 2014. Lessons from chlorophylls: modifications of porphyrinoids towards optimized solar energy conversion. Molecules. 19 : 15938-15954.
https://doi.org/10.3390/molecules191015938
 
57. Kim J.H., Glick R.E., Melis A. 1993. Dynamics of photosystem stoichiometry adjustment by light quality in chloroplasts. Plant Physiol. 102 : 181-190.
https://doi.org/10.1104/pp.102.1.181
 
58. Kirchhoff H. 2008. Molecular crowding and order in photosynthetic membranes. Trends Plant Sci. 13 : 201-207.
https://doi.org/10.1016/j.tplants.2008.03.001
 
59. Kouřil R., Zygadlo A., Arteni A.A., de Wit C.D., Dekker J.P., Jensen P.E., Scheller H.V., Boekema E.J. 2005. Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry. 44 : 10935-10940.
https://doi.org/10.1021/bi051097a
 
60. Kouřil R., Dekker J.P., Boekema E.J. 2012. Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta. 1817 : 2-12.
https://doi.org/10.1016/j.bbabio.2011.05.024
 
61. Kouřil R., Wientjes E., Bultema J.B, Croce R., Boekema E.J. 2013. High-light vs. low-light: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim. Biophys. Acta. 1827 : 411-419.
https://doi.org/10.1016/j.bbabio.2012.12.003
 
62. Krüger T.P., Ilioaia C., Johnson M.P., Belgio E., Horton P., Ruban A.V., van Grondelle R. 2013. The specificity of controlled protein disorder in the photoprotection of plants. Biophys. J. 105 : 1018-1026.
https://doi.org/10.1016/j.bpj.2013.07.014
 
63. Küpper H., Küpper F.C., Spiller M. 2006. [Heavy metal]-Chlorophylls formed in vivo during heavy metal stress and degradation products formed during digestion, extraction and storage of plant material. In: Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. Springer, Printed in The Netherlands : 67-77.
https://doi.org/10.1007/1-4020-4516-6_5
 
64. Küpper H., Seibert S., Parameswaran A. 2007. Fast, sensitive, and inexpensive alternative to analytical pigment HPLC: Quantification of chlorophylls and carotenoids in crude extracts by fitting with gauss peak spectra. Anal. Chem. 79 : 7611-7627.
https://doi.org/10.1021/ac070236m
 
65. Lamb J.J., Eaton-Rye J.J., Hohmann-Marriott M.F. 2012. An LED-based fluorometer for chlorophyll quantification in the laboratory and in the field. Photosynth. Res.114 : 59-68.
https://doi.org/10.1007/s11120-012-9777-y
 
66. Lemeille S., Rochaix J.D. 2010. State transitions at the crossroad of thylakoid signalling pathways. Photosynth. Res. 106 : 33-46.
https://doi.org/10.1007/s11120-010-9538-8
 
67. Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148 : 350-382.
https://doi.org/10.1016/0076-6879(87)48036-1
 
68. Lichtenthaler H.K., Buschmann C. 2001. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. In: Current Protocols in Food Analytical Chemistry. John Wiley & Sons, Inc. : F4.3.1-F4.3.8.
https://doi.org/10.1002/0471142913.faf0403s01
 
69. Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., An X., Chang W. 2004. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature. 428: 287-292.
https://doi.org/10.1038/nature02373
 
70. Mamedov M., Govindjee, Nadtochenko V., Semenov A. 2015. Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth. Res. 125 : 51-63.
https://doi.org/10.1007/s11120-015-0088-y
 
71. Mazaki H., Watanabe T., Takahashi T., Struck A., Scheer H.H. 1992. Pheophytinization of eight chlorophyll derivatives in aqueous acetone. Bull. Chem. Soc. Jpn. 65 : 3212-3214.
https://doi.org/10.1246/bcsj.65.3212
 
72. Mazor Y., Borovikova A., Caspy I., Nelson N. 2017. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nature Plant. 3 : 17014.
https://doi.org/10.1038/nplants.2017.14
 
73. Meitei M.D., Kumar A., Prasad M.N.V., Matec P., Waloszek A., Maleva M., Strzalka K. 2014. Phosynthetic pigments and pigment-protein complexes of aquatic plants under heavy metal stress. In: Photosynthetic Pigments: Chemical Structure, Biological Function and Ecology. Syktyvkar : 317-332.
 
74. Montané M.H., Kloppstech K. 2000.The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function? Gene. 258 : 1-8.
https://doi.org/10.1016/S0378-1119(00)00413-3
 
75. Morosinotto T., Bassi R., Frigerio S., Finazzi G., Morris E., Barber J. 2006. Biochemical and structural analyses of a higher plant photosystem II supercomplex of a photosystem I-less mutant of barley. Consequences of a chronic over-reduction of the plastoquinone pool. FEBS J. 273 : 4616-4630.
https://doi.org/10.1111/j.1742-4658.2006.05465.x
 
76. Mullineaux C. 2005. Function and evolution of grana. Trends Plant Sci. 10 : 521-525.
https://doi.org/10.1016/j.tplants.2005.09.001
 
77. Murchie E.H., Horton P. 1997. Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity, and habitat preference. Plant Cell Environ. 20 : 438-448.
https://doi.org/10.1046/j.1365-3040.1997.d01-95.x
 
78. Nelson N. 2009. Plant photosystem I: the most efficient nanophotochemical machine. J. Nanosci. Nanotechnol. 9 : 1709-1713.
https://doi.org/10.1166/jnn.2009.SI01
 
79. Nield J., Orlova E.V., Morris E.P., Gowen B., van Heel M., Barber J. 2000. 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nat. Struct. Biol. 7 : 44-47
https://doi.org/10.1038/71242
 
80. Nield J., Barber J. 2006. Refinement of the structural model for the Photosystem II supercomplex of higher plants. Biochim. Biophys. Acta. 1757 : 353-361.
https://doi.org/10.1016/j.bbabio.2006.03.019
 
81. Niyogi K.K., Li X.P., Rosenberg V., Jung H.S. 2005. Is PsbS the site of non-photochemical quenching in photosynthesis? J. Exp. Bot. 56 : 375-382.
https://doi.org/10.1093/jxb/eri056
 
82. Nouri M.Z., Moumeni A., Komatsu S. 2015. Abiotic stresses: insight into gene regulation and protein expression in photosynthetic pathways of plants. Int. J. Mol. Sci. 16 : 20392-20416.
https://doi.org/10.3390/ijms160920392
 
83. Okazaki S., Tomo T., Mimuro M. 2010. Direct measurement of singlet oxygen produced by four chlorin-ringed chlorophyll species in acetone solution. Chem. Phys. Lett. 485 : 202-206.
https://doi.org/10.1016/j.cplett.2009.12.055
 
84. van Oort B., Alberts M., de Bianchi S., Dall'Osto L., Bassi R., Trinkunas G., van Amerongen H. 2010. Effect of antenna-depletion in photosystem II on excitation energy transfer in Arabidopsis thaliana. Biophys. J. 98 : 922-931.
https://doi.org/10.1016/j.bpj.2009.11.012
 
85. Oster U., Tanaka R., Tanaka A., Rüdiger W. 2000. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J. 21 : 305-310.
https://doi.org/10.1046/j.1365-313x.2000.00672.x
 
86. Pan X., Liu Z., Li M., Chang W. 2013. Architecture and function of plant light-harvesting complexes II. Curr. Opin. Struct. Biol. 23 : 515-525.
https://doi.org/10.1016/j.sbi.2013.04.004
 
87. Passarini F., Xu P., Caffarri S., Hille J., Croce R. 2014. Towards in vivo mutation analysis: knock-out of specific chlorophylls bound to the light-harvesting complexes of Arabidopsis thaliana - the case of CP24 (Lhcb6). Biochim. Biophys. Acta. 1837 : 1500-1506.
https://doi.org/10.1016/j.bbabio.2014.02.012
 
88. Peter G.F., Thornber J.P. 1991. Biochemical composition and organization of higher plant photosystem II light-harvesting pigment proteins. J. Biol. Chem. 266 : 16745-16754.
 
89. Pfannschmidt T., Nilsson A., Allen J.F. 1999. Photosynthetic control of chloroplast gene expression. Nature. 397 : 625-628.
https://doi.org/10.1038/17624
 

90. Porra R.J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 73 : 149-156.

https://doi.org/10.1023/A:1020470224740

 
91. Porra R.J., Thompson W.A., Kreidemann P.E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochim. Biophys. Acta. 975 : 384-394.
https://doi.org/10.1016/S0005-2728(89)80347-0
 
92. Qin X., Suga M., Kuang T., Shen J.-R. 2015. .Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science. 348 : 989-995.
https://doi.org/10.1126/science.aab0214
 
93. Reinbothe C., Bartsch S., Eggink L.L., Hoober J.K., Brusslan J., Andrade-Paz R., Monnet J., Reinbothe S. 2006. A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc. Natl. Acad. Sci. USA. 103 : 4777-4782.
https://doi.org/10.1073/pnas.0511066103
 
94. Ritchie R.J. 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89 : 27-41.
https://doi.org/10.1007/s11120-006-9065-9
 
95. Rosianskey Y., Dahan Y., Yadav S., Freiman Z. E., Milo-Cochavi S., Kerem Z., Eyal Y., Flaishman M.A. 2016. Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening. Planta. 244 (2) : 491-504.
https://doi.org/10.1007/s00425-016-2522-6
 
96. Ruban A. 2009. Plants in light. Commun. Integr. Biol. 2 : 50-55.
https://doi.org/10.4161/cib.2.1.7504
 

97. Rüdiger W. 2002. Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynth. Res. 74 : 187-193.

https://doi.org/10.1023/A:1020959610952

 
98. Sakuraba Y., Balazadeh S., Tanaka R., Mueller-Roeber B., Tanaka A. 2012. Overproduction of chl b retards senescence through transcriptional reprogramming in Arabidopsis. Plant Cell Physiol. 53 : 505-517.
https://doi.org/10.1093/pcp/pcs006
 
99. Sato Y., Morita R., Katsuma S., Nishimura M., Tanaka A., Kusaba M. 2009. Two shortchain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J. 57 : 120-131.
https://doi.org/10.1111/j.1365-313X.2008.03670.x
 
100. Satoh S., Ikeuchi M., Mimuro M., Tanaka A. 2001. Chlorophyll b expressed in cyanobacteria functions as a light-harvesting antenna in Photosystem I through flexibility of the proteins. J. Biol. Chem. 276 : 4293-4297.
https://doi.org/10.1074/jbc.M008238200
 
101. Schneegurt M.A., Beale S.I. 1992. Origin of the chlorophyll b formyl from oxygen in Chlorella vulgaris. Biochemistry. 31 : 11677-11683.
https://doi.org/10.1021/bi00162a002
 
102. Seely G.R. 1966. The structure and chemistry of functional groups. In: The Chlorophylls. Academic Press, New York, London : 67-109.
https://doi.org/10.1016/B978-1-4832-3289-8.50009-6
 
103. Shi L.X., Hall M., Funk C., Schröder W.P. 2012. Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. Biochim. Biophys. Acta. 1817 : 13-25.
https://doi.org/10.1016/j.bbabio.2011.08.008
 
104. Simpson D., Machold O., Hoyer-Hansen G., von Wettstein D. 1985. Chlorina mutants of barley (Hordeum vulgare L.). Carlsberg Res. Commun. 50 : 223-238.
https://doi.org/10.1007/BF02907148
 
105. Sonoike K. 2011. Photoinhibition of photosystem I. Physiol. Plant. 142 : 56-64.
https://doi.org/10.1111/j.1399-3054.2010.01437.x
 
106. Staehelin L.A. 1996. Structure, composition, functional organization and dynamic properties of thylakoid membranes. In: Oxygenic Photosynthesis: The Light Reactions. Springer, Dordrecht : 11-30.
https://doi.org/10.1007/0-306-48127-8_2
 
107. Standfuss J., Kuhlbrandt W. 2004. The three isoforms of the light-harvesting complex II: spectroscopic features, trimer formation, and functional roles. J. Biol. Chem. 279 : 36884-36891.
https://doi.org/10.1074/jbc.M402348200
 
108. Standfuss J., Terwisscha van Scheltinga A.C., Lamborghini M., Kühlbrandt W. 2005. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J. 24 : 919-928.
https://doi.org/10.1038/sj.emboj.7600585
 
109. Storf S., Jansson S., Schmid V.H.R. 2005. Pigment binding, fl uorescence properties, and oligomerization behavior of Lhca5, a novel light-harvesting protein. J. Biol. Chem. 280 : 5163-5168.
https://doi.org/10.1074/jbc.M411248200
 
110. Syvash, O.O., Zolotareva O. K. 2017. Regulation of chlorophyll degradation in plant tissues. Biotechnol. Acta. 10 : 20-30.
https://doi.org/10.15407/biotech10.03.020
 
111. Tanaka A., Ito H., Tanaka R., Tanaka N.K., Yoshida K. Okada K. 1998. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc. Natl. Acad. Sci. USA. 95 : 12719-12723.
https://doi.org/10.1073/pnas.95.21.12719
 
112. Tanaka R., Tanaka A. 2011. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim. Biophys. Acta. 1807 : 968-976.
https://doi.org/10.1016/j.bbabio.2011.01.002
 
113. Thayer S.S., Björkman O. 1992. Carotenoid distribution and deepoxidation in thylakoid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize. Photosynth. Res. 33 : 213-225.
https://doi.org/10.1007/BF00030032
 
114. Thornber J.P., Highkin H.R. 1974. Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b. Eur. J. Biochem. 41 : 109-116.
https://doi.org/10.1111/j.1432-1033.1974.tb03250.x
 
115. Tikkanen M., Aro E.M. 2012. Thylakoid protein phosphorylation in dynamic regulation of photosystem II inhigher plants. Biochim. Biophys. Acta. 1817 : 232-238.
https://doi.org/10.1016/j.bbabio.2011.05.005
 
116. Topchiy N.M., Sytnik S.K., Syvash O.O., Zolotareva O.K. 2005. The effect of additional red irradiation on the photosyn¬thetic apparatus of Pisum sativum. Photosynthetica. 43 : 451-456.
https://doi.org/10.1007/s11099-005-0072-4
 
117. Veltchkova M.Y., Picorel R. 2004. Photobleaching of photosynthetic pigments in spinach thylakoid membranes. Effect of temperature, oxygen and DCMU. Biophys. Chem. 107 : 25-30.
https://doi.org/10.1016/S0301-4622(03)00217-5
 
118. Wakao N., Yokoi N., Isoyama N., Hiraishi A., Shimada K., Kobayashi M., Kise H., Iwaki M., Itoh S., Takaichi S., Sakurai Y. 1996. Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol. 37 : 889-893.
https://doi.org/10.1093/oxfordjournals.pcp.a029029
 
119. Walladares F., Niinemets U. 2008. Shade tolerance, a kye plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39 : 237-257.
https://doi.org/10.1146/annurev.ecolsys.39.110707.173506
 
120. Watanabe T., Kobayashi M. 1988. Chlorophylls as functional molecules in photosynthesis. Molecular composition in vivo and physical chemistry in vitro. J. Chem. Soc. Jap. 4 : 383-395.
https://doi.org/10.1246/nikkashi.1988.383
 
121. Wientjes E., Croce R. 2011. The light-harvesting complexes of higher-plant photosystem I: lhca1/4 and Lhca2/3 form two red-emitting heterodimers. Biochem. J. 433 : 477-485.
https://doi.org/10.1042/BJ20101538
 
122. Wientjes E., van Amerongen H., Croce R. 2013. LHCII is an antenna of both photosystems after long-term acclimation. Biochim. Biophys. Acta. 1827 : 420-426.
https://doi.org/10.1016/j.bbabio.2012.12.009
 
123. Xu H., Vavilin D., Vermaas W. 2001. Chlorophyll b can serve as the major pigment in functional Photosystem II complexes of cyanobacteria. Proc. Natl. Acad. Sci. USA. 98 : 14168-14173.
https://doi.org/10.1073/pnas.251530298
 
124. Yakushevska A.E., Keegstra W., Boekema E.J., Dekker J.P., Andersson J., Jansson S., Horton P. 2003. The structure of photosystem II in Arabidopsis: localization of the CP26 and CP29 antenna complexes. Biochemistry. 42 : 608-613.
https://doi.org/10.1021/bi027109z
 
125. Yamori W., Evans J.R., von Caemmerer S. 2010. Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves. Plant Cell Environ. 33 : 332-343.
https://doi.org/10.1111/j.1365-3040.2009.02067.x
 
126. Zhang Y., Liu C., Liu S., Shen Y., Kuang T., Yang C. 2008. Structural stability and properties of three isoforms of the major light-harvesting chlorophyll a/b complexes of photosystem II. Biochim. Biophys. Acta. 1777 : 479-487.
https://doi.org/10.1016/j.bbabio.2008.04.012