Вісн. Харків. нац. аграрн. ун-ту. Сер. Біологія, 2018, вип. 3 (45), с. 31-48


https://doi.org/10.35550/vbio2018.03.031




РОЛЬ САЛІЦИЛОВОЇ КИСЛОТИ У ФОРМУВАННІ СИСТЕМНОЇ НАБУТОЇ СТІЙКОСТІ РОСЛИН ПРИ ПАТОГЕНЕЗІ


Л. В. Пашкевич, Л. Ф. Кабашникова

Інститут біофізики і клітинної інженерії
Національної академії наук Білорусі
(Мінськ, Білорусь)
E-mail: kabashnikova@ibp.org.by


Саліцилова кислота (СК) є фітогормоном, що відіграє важливу роль в ряді фізіологічних реакцій, включаючи захист рослин в стресових умовах. Системна набута стійкість (system acquired resistance, SAR) є однією з таких СК-залежних відповідей рослин при патогенезі. SAR є механізмом передачі сигналів на великі відстані, що забезпечує широкий спектр реакцій і тривалу стійкість до вторинних інфекцій. Ця унікальна особливість робить SAR вельми перспективною ознакою в рослинництві. В огляді представлені відомості, що стосуються ролі СК у розвитку SAR у відповідь на дію різноманітних стресових чинників. Розглянуто можливі шляхи біосинтезу ендогенної СК в рослинах та їх зв'язок з формуванням індукованої стійкості, а також наведені експериментальні дані і гіпотези, що стосуються механізму захисної дії СК в умовах біотичного та абіотичного стресу. Особливу увагу приділено результатам дослідження ролі СК у формуванні SAR в рослинах при патогенезі в умовах гіпертермії.


Ключові слова: системна набута стійкість, саліцилова кислота, метилсаліцилат, активні форми кисню, кальцій, каталаза, пероксидаза, НАДФН-оксидаза, PR-білки, патогенез, гіпертермія

 


ЛІТЕРАТУРА


1. Abramchik L.M., Serdyuchenko E.V., Pashkevich L.V., Makarov V.N., Zenevich L.A., Kabashnikova L.F. 2016. The effect of salicylic acid on the structural and functional state of the photosynthetic apparatus and the oxidative status of barley plants under conditions of infection of Bipolaris sorokiniana (Sacc) Shoem and elevated temperature. News Natl. Acad. Sci. Belarus. Gray Biol. Sci. (Vestsi Nats. Akad. Navuk Belarusi. Ser. Biyal. Navuk). 2 : 69-77.
 
2. Akulov A.Y. 2006. Induced non-specific resistance of plants: history and modernity (Indutsirovannaya nespetsificheskaya ustoichivost' rastenii: istoriya I sovremennost'). Kharkov : 37 p.
 
3. Andreeva V.A. 1988. Enzyme peroxidase. Participation in the protective mechanism of plants (Ferment peroksidasa. Uchastie v zaschitnom mekanizme rastenii). Moscow : 128 p.
 
4. Akhatova A.R. 2013. Inducing effect of signaling molecules on the expression of PR-protein genes of wheat upon infection with Bipolaris sorokiniana. Factors of plant resistance in extreme natural conditions and man-made environment (Faktory ustoichivisti rastenii v ekstremalnykh prirodnykh usloviyskh i tekhnogennoi srede). Irkutsk : 30-31.
 
5. Belykh Yu.V., Kirillova N.V., Spasenkov A.I. 2009. Effect of salicylic acid on anti-oxidant and pro-oxidant activity in plant cells. Vestnik St. Petersburg Univ. Ser. 3. 2 : 145-151.
 
6. Vasyukova N.I., Ozeretskovskaya O.L. 2007. Induced plant resistance and salicylic acid: A review. Appl. Biochem. Microbiol. (Prikl. Biokhimiya i Mikrobiologiya). 43. 4 : 367-373.
https://doi.org/10.1134/S0003683807040011
 
7. Evdokimova O.B., Kabashnikova LF, Savchenko G.E. 2014. The content of salicylic acid and reactive oxygen species in barley leaves (Hordeum vulgare) when treated with salicylates. News Natl. Acad. Sci. Belarus. Gray Biol. Sci. (Vestsi Nats. Akad. Navuk Belarusi. Ser. Biyal. Navuk). 3: 57-61.
 
8. Kabashnikova L.F. 2018. Molecular mechanisms of plants and phytopatogens interection: innate immunity. J. Beloruss. State Univ. Ecology. (Zhurn. Belorus. Gos. Un-ta. Ekologiya). 2 : 26-37.
 
9. Kapylova L.V., Abramchik L.M., Kabashnikova L.F. 2012. The influence of salicylic acid on the activity of peroxidase of spring barley seedlings under conditions of hyperthermia and phytopathogenic infection. Actual Problems of Ecology (Aktualnie problemy ekologii). Grodno : 157-158.
 
10. Kapylova L.V., Abramchik L.M., Kabashnikova L.F. 2013. Effect of salicylic acid on the activity of lipid peroxidation processes and the generation of H2O2 in spring barley seedlings under the combined effect of hyperthermia and inoculation of phytopathogenic. Cell Biology and Plant Biotechnology (Kletochnaya biologiya i biotekhnologiya rastenii). Minsk : 123.
 
11. Kapylova L.V., Abramchik L.M., Kabashnikova L.F. 2013. Effect of salicylic acid on the stability of spring barley to dark brown patchiness. Youth and innovation - 2013 (Molodezh i innivatsii - 2013: Gorki : 154-156.
 
12. Kapylova L.V., Abramchik L.M., Kabashnikova L.F. 2014. The role of exogenous salicylic acid in the formation of acquired resistance in spring barley plants to the combined effect of hyperthermia and phytopathogenic infection. Young people in science - 2013. A series of biological and medical sciences (Molodezh v nauke - 2013. Ser. Boil. i med. nauk) : 70-74.
 
13. Kolupaev Yu.E., Akinina G.E., Mokrousov A.V., Sirota N.I. 2004. Induction of oxidative stress and heat-resistance of plant cells with salicylic acid. Bull. Kharkiv Natl. Agrar. Univer. Ser. Biology. (Visn. Kharkiv. Natsional. Agrarn. Univer. Ser. Biologiya. 1 (4) : 40-47.
 
14. Kolupaev Yu.E., Karpets Yu.V. 2006. Salicylation-induced superoxide generation by wheat coleoptiles depends on the calcium status of their cells. Bull. Kharkiv Natl. Agrar. Univer. Ser. Biology. (Visn. Kharkiv. Natsional. Agrarn. Univer. Ser. Biologiya. 1 (8) : 51-57.
 
15. Kolupaev Yu.Ye., Karpets Yu.V. 2009. Salicylic acid and plants resistance to abiotic stressors. Bull. Kharkiv Natl. Agrar. Univer. Ser. Biology. (Visn. Kharkiv. Natsional. Agrarn. Univer. Ser. Biologiya. 2 (17) : 19-39.
 
16. Kolupaev Yu.E., Yastreb T.O. 2013. Stress-protective effects of salicylic acid and its structural analogues. Physiol. Biochem. Cult. Plants. (Fiziologiya i Biokhimiya kul't. Rastenii). 45 (2) : 113-126.
 
17. Kreslavsky V.D., Allakhverdiev S.I., Los D.A., Kuznetsov Vl.V. 2012. Signaling role of reactive oxygen species in plants under stress. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 59 (2) : 141-154.
https://doi.org/10.1134/S1021443712020057
 
18. Kreslavsky V.D., Lyubimov V.Y., Kotova L.M. 2011. Effect of common bean seedling pretreatment with chlorocholine chloride on photosystem II tolerance to UV-B radiation, phytohormone content, and hydrogen peroxide content. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 58 (2): 324-329.
https://doi.org/10.1134/S1021443711020087
 
19. Maksimov I.V., Sorokan' A.V., Cherepanov Ye.A., Surina O.B., Troshina N.B., Yarullina L.G. 2011. Effects of salicylic and jasmonic acids on the components of pro/antioxidant system in potato plants infected with late blight. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 2 : 299-306.
https://doi.org/10.1134/S1021443711010109
 
20. Mamenko T.P. 2012. The intensity of oxidative processes in the leaves of winter wheat with prolonged exposure to drought and treatment with salicylic acid. Physiol. Biochem. Cult. Plants. (Fiziologiya i Biokhimiya Kul't. Rastenii). 44 (3) : 240-247.
 
21. Maslennikova D.R. Fatkhutdinova R.A., Bezrukova M.V., Allagulova Ch.R., Klyuchnikova E.O., Shakirova F.M. 2013. Mechanisms of the protective effect of salicylic acid on wheat plants under conditions of cadmium stress. Agrochemiya. 3 : 72-79.
 
22. Makhdavian K., Gorbanli M., Kalantari Kh.M. 2008. Role of salicylic acid in regulating ultraviolet radiation-induced oxidative stress in pepper leaves. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 55 (4) : 560
https://doi.org/10.1134/S1021443708040195
 
23. Molodchenkova O.O. 2005. The effect of salicylic acid and Fusarium graminearum on catalase activity, the content of H2O2 and endogenous salicylic acid in wheat germs. Physiol. Biochem. Cult. Plants. (Fiziologiya i Biokhimiya Kul't. Rastenii). 37 (1) : 37-43.
 
24. Molodchenkova O.O. 2009. The activity of NADPH oxidase, the content of hydrogen peroxide and salicylic acid in spring barley seedlings with fusarium infection and the action of salicylic acid. Cult. Plants. (Fiziologiya i Biokhimiya Kul't. Rastenii). 41 (4) : 321-327.
 
25. Nuzhnaya T.V., Veselova S.V., Maksimov I.V. 2015. The effect of salicylic acid and ethylene on the resistance of wheat plants to Septoria nodorum Berk. Bulletin Bashkir. Univer. (Vestnik Bashkir. Un-ta). 20 (1c) : 92-96.
 
26. Pavlova E.L., Rikhvanov E.G., Towson E.L. 2009. Effect of salicylic acid on the development of induced Thermotolerance and induction of heat shock protein synthesis in the Arabidopsis thaliana cell culture. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 56 (1) : 68-73.
https://doi.org/10.1134/S1021443709010105
 
27. Plotnikova L.Y. 2009. The involvement of reactive oxygen species in defense of wheat lines with the genes introgressed from Agropyron species contributing the resistance against brown rust. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 56 (2) : 181-189.
https://doi.org/10.1134/S102144370902006X
 
28. Polyakova N.V. 2012. The influence of salicylic acid on the development of the pathological process in barley when the pathogen infects the mesh helminthosporium. Phenolic compounds: fundamental and applied aspects (Fenolnye soedineniya: fudamentalnye i prikladnye aspekty). Moscow : 415-419.
 
29. Rogozhin V.V. 2004. Peroxidase as a component of the antioxidant system of living organisms (Peroxidasa kak component antioxidantnoi sistemy zhyvikh organizmov). GIORD : 22-31.
 
30. Rogozhin V.V., Peretolchin D.V. Kinetics of oxidase oxidation of ascorbic acid by horsersdish peroxidase. Herald YUrSU (Vestn. YuUrGU). 11 : 61-65.
 
31. Sapko O.A., Utarbayeva A.S., Makulbek S. 2001. The influence of salicylic acid on the formation of the antioxidant response induced by fusariosis pathogens in potato suspension cells. Biotechnology. Theory and Practice. (Biotekhnologiya: Teoriya i Praktica). 1 : 25-33.
 
32. Sakhabutdinova A.R., Fatkhutdinova D.R., Shakirova F.M. 2004. Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. Appl. Biochem. Microbiol. (Prikl. Biokhimiya i Mikrobiologiya). 40 (5) : 501-505.
https://doi.org/10.1023/B:ABIM.0000040675.29736.91
 
33. Tarchevsky I.A. 2002. Signaling systems of plant cells (signalnye sistemy kletok rastenii). Moscow : 294 p.
 
34. Tarchevskii I.A., Yakovleva V.G., Egorova A.M. 2010. Salicylate-induced modification of plant proteomes (review). Appl. Biochem. Microbiol. (Prikl. Biokhimiya i Mikrobiologiya). 46. 3 : 241-252.
https://doi.org/10.1134/S0003683810030026
 
35. Tarchevsky I.A., Yakovleva V.G., Egorova A.M. 2010b. Proteomic analysis of salicylate-induced proteins of pea (Pisum sativum L.) leaves. Biochemistry (Mosc.). (Biokhimiya). 75 (5) : 590-597.
https://doi.org/10.1134/S0006297910050081
 
36. Tarchevsky I.A. 2017. Molecular battle between plants and microorganisms (the role of salicylic acid in phytoimmunity). Godnev's lectures : XXIV Plant photobiology and photosynthesis. (Godnevskie chteniya: XXIV Fotobiologiya rastenii i fotosintes). Ed. I.D. Volotovskii. Minsk : Pravo i ekonomika : 108.
 
37. Tyuterev S.L. 2002. Scientific foundations of induced plant resistance (Nauchnye osnovi inditsirovannoi ustoichivosti rastenii). St. Petersburg: 328 p.
 
38. Sharipova M.R., Balaban N.P., Mardanova A.M., Nyamsuren Ch., Valeeva L.R. 2013. Mechanisms of plant resistance to infections. Scientific notes of Kazan University. Natural Sciences. (Uch. Zapiski Kazan Un-ta. Yestestvennye Nauku). 155 (4) : 28-58.
 
39. Yarullina L.G., Kasimova R.I., Burkhanova G.F., Akhatova A.R. 2014. The effect of salicylic and jasmonic acids on the activity and range of protective proteins during the infection of wheat by the septoriosis pathogen. Biology Bulletin (Izv. RAN. Ser. Biologicheskaya. 5 : 27-33.
https://doi.org/10.1134/S1062359014050124
 
40. An C., Mou Z. 2011. Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53 : 412-428.
https://doi.org/10.1111/j.1744-7909.2011.01043.x
 
41. Asai T., Smith-Becker J., Marois E. 1998. Accumulation of salicylic acid 4-hydroxybenzoic acid in phloem fluids of Cucumber during systemic acquired resistance is preceed by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems. Plant Physiol. 116. 1 : 231-238.
https://doi.org/10.1104/pp.116.1.231
 
42. Asai T., Stone J.M. 2000. Fumosin B1 induced cell death in Arabidopsis protoplasts requires jasmonate-, etylene-, and salicylate-dependent signaling pathways. Plant Cell. 12 : 1823-1836.
https://doi.org/10.2307/3871195
 
43. Cameron R., Paiva N.L., Lamb C.J., Dixon R.A. 1999. Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol. Mol. Plant Pathol. 55 : 121-130.
https://doi.org/10.1006/pmpp.1999.0214
 
44. Cameron R.K., Dixon R.A., Lamb C.J. 1994. Biologically induced systemic acquired resistance in Arabidopsis thaliana. Plant J. 5 : 715-725.
https://doi.org/10.1111/j.1365-313X.1994.00715.x
 
45. Chanda B., Xia Y., Mandal M.K., Sekine K.T., Gao Q.M., Selote D. 2011. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nature Genetics. 43 : 421-427.
https://doi.org/10.1038/ng.798
 
46. Chen Z., Malamy J. 1995. Induction, modification and transduction of the salicylic acid signal in plant defense responses. Proc. Nat. Acad. Sci. 92 : 4134-4137.
https://doi.org/10.1073/pnas.92.10.4134
 
47. Chen Z., Silva H., Klessig D.F. 1993. Active oxygen species in the induction of plant systemic acguired resistance by salicylic acid. Science. 262. 12 : 1883-1886.
https://doi.org/10.1126/science.8266079
 
48. Chen Z., Zheng Z., Huang J., Lai Z., Fan B. 2009. Biosynthesis of salicylic acid in plants. Plant Signal. Behav. 4 : 493-496.
https://doi.org/10.4161/psb.4.6.8392
 
49. Coll N.S., Epple P., Dangl J.L. 2011. Programmed cell death in the plant immune system. Cell Death Differ. 18 : 1247-1256.
https://doi.org/10.1038/cdd.2011.37
 
50. Dat J.F., Lopez-Delgado H. 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol. 116 : 1351-1357.
https://doi.org/10.1104/pp.116.4.1351
 
51. Dempsey D.A., Vlot A.C., Wildermuth M.C., Klessig D.F. 2011. Salicylic acid biosynthesis and metabolism. Arabidopsis Book. American Society of Plant Biologists. 9 : 5-24.
https://doi.org/10.1199/tab.0156
 
52. Effmert U., Saschenbrecker S., Ross J., Negre F., Fraser C.M., Noel J.P. 2005. Floral benzenoid carboxyl methyltransferases: from in vitro to in planta function. Phytochemistry. 66 : 1211-1230.
https://doi.org/10.1016/j.phytochem.2005.03.031
 
53. Fragniere C., Serrano M., Abou-Mansour E., Metraux J.P., L'Haridon F. 2011. Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett. 585 : 1847-1852.
https://doi.org/10.1016/j.febslet.2011.04.039
 
54. Galvez V.G., Mullineaux P.M. 2010. The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol. Plant. 138 : 430-439.
https://doi.org/10.1111/j.1399-3054.2009.01331.x
 
55. Gao Q.-M., Xia Y., Yu K., Navarre D., Kachroo A., Kachroo P. 2014. Galactolipids are required for nitric oxide biosynthesis and systemic acquired resistance. Cell Rep. 9 : 1681-1691.
https://doi.org/10.1016/j.celrep.2014.10.069
 
56. Gao Q.-M., Zhu S., Kachroo P., Kachroo A. 2015. Signal regulators of systemic acquired resistance. Front. Plant Sci. 6: 228.
https://doi.org/10.3389/fpls.2015.00228
 
57. Geetha H.M., Shetty H.S. 2002. Expression of oxidative burst in cultured cells of pearl millet cultivars against Sclerospora graminicola inoculation and elicitor treatment. Plant Sci. 163 : 653-660.
https://doi.org/10.1016/S0168-9452(02)00176-0
 
58. Glowacki S., Macioszek V.K., Kononowicz A.K. 2011. Proteins as fundamentals of plant innate immunity. Cell. Mol. Biol. Lett. 16 : 1-24.
https://doi.org/10.2478/s11658-010-0024-2
 
59. Gruner K., Griebel T., Navarova H., Attaran E., Zeier J. 2013. Reprogramming of plants during systemic acquired resistance. Front. Plant Sci. 4 : 252.
https://doi.org/10.3389/fpls.2013.00252
 
60. Hammond-Kosak K.E., Jones J.D.G. 1996. Resistance gene dependent plant defense responses. Plant Cell. 8 : 1773-1791.
https://doi.org/10.1105/tpc.8.10.1773
 
61. Heidel A.J., Clarke J.D., Antonovics J., Dong X. 2004. Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics. 168 : 2197-2206.
https://doi.org/10.1534/genetics.104.032193
 
62. Heil M., Baldwin I.T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7 : 61-66.
https://doi.org/10.1016/S1360-1385(01)02186-0
 
63. Hennig J., Malamy J., Grynkiewicz G., Indulski J., Klessig D. 1993. Interconversion of the salicylic acid signal and its glucoside in tobacco. Plant J. 4 : 593-600.
https://doi.org/10.1046/j.1365-313X.1993.04040593.x
 
64. Hu X.Y., Neill S.J., Cai W.M., Tang Z.C. 2004. Induction of defence gene expression by oligogalacturonic acid requires increases in both cytosolic calcium and hydrogen peroxide in Arabidopsis thaliana. Cell. Res. 14 : 234-240.
https://doi.org/10.1038/sj.cr.7290224
 
65. Huang J., Gu M., Lai Z., Fan B., Shi K., Zhou Y.H. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 153 : 1526-1538.
https://doi.org/10.1104/pp.110.157370
 
66. Janda T., Szalai G., Tari I. 1999. Hydroponics treatment with salicylic acid decreases the effects of chilling in maize (Zea mays L). Planta. 208 : 175-180.
https://doi.org/10.1007/s004250050547
 
67. Jaspers P., Kangasjarvi J. 2010. Reactive oxygen species in abiotic stress signaling. Physiol. Plant. 138 : 405-413.
https://doi.org/10.1111/j.1399-3054.2009.01321.x
 
68. Jung H.W., Tschaplinkski T.J., Wang L., Glazebrook J., Greenberg J.T. 2009. Priming in systemic plant immunity. Science. 324 : 89-91.
https://doi.org/10.1126/science.1170025
 
69. Kachroo A., Kachroo P. 2009. Fatty acid-derived signals in plant defense. Annu. Rev. Phytopathol. 47 : 153-176.
https://doi.org/10.1146/annurev-phyto-080508-081820
 
70. Kachroo P., Kachroo A. 2012. The roles of salicylic acid and jasmonic acid in plant immunity. Molecular Plant Immunity. Oxford : 398 p.
https://doi.org/10.1002/9781118481431.ch4
 
71. Kang G., Li G., Guo T. 2014. Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol. Plant. 36 : 2287-2297.
https://doi.org/10.1007/s11738-014-1603-z
 
72. Kang H.M., Salveit M.E. 2002. Chilling tolerance of maize, cucumber and rice seedling and roots are differentially affected by salicylic acid. Physiol. Plant. 115 : 571-576.
https://doi.org/10.1034/j.1399-3054.2002.1150411.x
 
73. Kawano T., Muto S. 2000. Mechanism of peroxidase actions for salicylic acid induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. J. Exp. Bot. 51 : 345.
https://doi.org/10.1093/jexbot/51.345.685
 
74. Keller T., Damude H.G., Verner D. 1998. A plant homologue of the neutropil NADPH oxidase gp91 phox subunit gene encodes a plasma membrane protein with Ca++ binding motifs. Plant Cell. 10 : 255-266.
https://doi.org/10.1105/tpc.10.2.255
 
75. Kiefer I. W., Slusarenko A. J. 2003. The pattern of systemic acquired resistance induction within the Arabidopsis rosette in relation to the pattern of translocation. Plant Physiol. 132 : 840-847.
https://doi.org/10.1104/pp.103.021709
 
76. Koo Y. J., Kim M. A., Kim E. H., Song J. T., Jung C., Moon J. K. 2007. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Mol. Biol. 64 : 1-15.
https://doi.org/10.1007/s11103-006-9123-x
 
77. Kushalappa A.C., Yogendra K.N., Karre S. 2016. Plant Innate Immune Response: Qualitative and Quantitative Resistance. Critic. Rev. Plant Sci. 35 : 38-55.
https://doi.org/10.1080/07352689.2016.1148980
 
78. Lamb C., Dixon R.A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 : 251-275.
https://doi.org/10.1146/annurev.arplant.48.1.251
 
79. Lamb C.J., Lawton M.A. 1989. Signals and transduction mechanism for activation of plant defense against microbial attack. Cell. 56 : 215-224.
https://doi.org/10.1016/0092-8674(89)90894-5
 
80. Larkindale J., Huang B. 2005. Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regul. 47 : 17-28.
https://doi.org/10.1007/s10725-005-1536-z
 
81. Lawton K., Weymann K., Friedrich L., Vernooij B., Uknes S., Ryals J. 1995. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol. Plant Microbe Interact. 8 : 863-870.
 
82. Lei T., Feng H., Sun X., Dai Q.L., Zhang F., Liang H.G., Lin H.H. 2010. The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regul. 60 : 35-42.
https://doi.org/10.1007/s10725-009-9416-6
 
83. Li Y., Loake G.J. 2016. Redox-regulation plant transcription factors. Plant Transcription Factors. Evolutionary, Structural and Functional Aspects : 373-384.
https://doi.org/10.1016/B978-0-12-800854-6.00024-5
 
84. Liu P.P., Yang Y., Pichersky E., Klessig D.F. 2010. Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in Arabidopsis. Mol. Plant Microbe Interact. 23 : 82-90.
https://doi.org/10.1094/MPMI-23-1-0082
 
85. Liu Y., Huang W., Wang L. 2005. Response of 14C-salicylic acid to heat stress after being fed to leaves of grape plants. Agr. Sci. China. 4 (2) : 106-112.
 
86. Lord J.C. 2005. From Metchnikoff to Monsanto and beyond: The path of microbial control. J. Invertebrate Pathol. 89 : 19-29.
https://doi.org/10.1016/j.jip.2005.04.006
 
87. Martinez С. 2000. Salicylic acid mediated by the оxidative burst is a key molecule in local and systemic responses of cotton challenged by an avirulent race of Xanthomonas campestris pv malvacearum. Plant Physiol. 122 : 757-766.
https://doi.org/10.1104/pp.122.3.757
 
88. Miedes E., Vanholme R., Boerjan W., Molina A. 2014. The role of the secondary cell wall in plant resistance to pathogens. Front. Plant Sci. 5 : 358.
https://doi.org/10.3389/fpls.2014.00358
 
89. Minibayeva F.V., Gordon L.K., Kolesnikov O.P., Chasov A.V. 2001. Role of extracellular peroxidase in the superoxide production by wheat roots cells. Protoplasma. 217 : 125-128.
https://doi.org/10.1007/BF01289421
 
90. Mishina T.E., Zeier J. 2006. The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol. 141 : 1666-1675.
https://doi.org/10.1104/pp.106.081257
 
91. Mishra A., Choudhuri M.A. 1999. Effect of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol.Plant. 42 : 409-415.
https://doi.org/10.1023/A:1002469303670
 
92. Mori I.C., Schroeder J.S. 2004. Reactive oxygen species activation of plant Ca2+ channals. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol. 135 : 702-708.
https://doi.org/10.1104/pp.104.042069
 
93. Navarova H., Bernsdorff F., Döring A.C., Zeier J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell. 24 : 5123-5141.
https://doi.org/10.1105/tpc.112.103564
 
94. Nawrath C., Heck S., Parinthawong N., Metraux J.P. 2002. EDS5, an essential component of salicylic acid dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell. 14 : 275-286.
https://doi.org/10.1105/tpc.010376
 
95. Norman C., Howell K.A., Millar H.A. 2004. Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol. 134. 1 : 492-501.
https://doi.org/10.1104/pp.103.031039
 
96. Ogasawara Y., Hiraoka G., Yamagoe S. 2005. Functional characterization of the plant NADPH oxidase by heterologous expression. Plant Cell Physiol. 46 : 106.
 
97. Pallas J.A., Paiva N.L., Lamb C., Dixon R.A. 1996. Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J. 10 : 281-293.
https://doi.org/10.1046/j.1365-313X.1996.10020281.x
 
98. Park S. W., Kaiyomo E., Kumar D., Mosher S. L., Klessig D.F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science. 318 : 113-116.
https://doi.org/10.1126/science.1147113
 
99. Peyraud R., Dubiella U., Barbacci A., Genin S., Raffaele S., Roby D. 2017. Advances on plant-pathogen interactions from molecular toward systems biology perspectives. Plant J. 90 : 720-737.
https://doi.org/10.1111/tpj.13429
 
100. Pierpoint W.S. 1994. Salicylic acid and its derivatives in plants: medicines, metabolites and messenger molecules. Bot. Res. 20 : 163-235.
https://doi.org/10.1016/S0065-2296(08)60217-7
 
101. Pietras T., Malolepsza U., Witusik A. 1997. Udzial nadtlenku wodoru i reaktywnych postaci tlenu wytwarzanych przez oksydaze NADPH w odpornosci roslin przeciwko patogenom. Wiad. Bot. 41 (3-4) : 43-50.
 
102. Rasmussen J.B., Hammerschmidt R., Zook M.N. 1991. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae. Plant Physiol. 97 : 1342-1347.
https://doi.org/10.1104/pp.97.4.1342
 
103. Richael C., Gilchrist D. 1999. The hypersensitive response: A case of hold or fold. Physiol. Mol. Plant Pathol. 55 : 5-12.
https://doi.org/10.1006/pmpp.1999.0209
 
104. Ryals J., Uknes S., Ward E. 1994. Systemic acquired resistance. Plant Physiol. 104. 4 : 1109-1112.
https://doi.org/10.1104/pp.104.4.1109
 
105. Sagi M., Fluhr R. 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141 : 336-340.
https://doi.org/10.1104/pp.106.078089
 
106. Serrano M., Wang B., Aryal B., Garcion C., Abou-Mansour E., Heck S. 2013. Export of salicylic acid from the chloroplast requires the MATE-like transporter EDS5. Plant Physiol. 162 : 1815-1821.
https://doi.org/10.1104/pp.113.218156
 
107. Shah J. 2003. The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 6 : 365-371.
https://doi.org/10.1016/S1369-5266(03)00058-X
 
108. Sticher L., Mauch-Mani B., Metraux J.P. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35 : 235-270.
https://doi.org/10.1146/annurev.phyto.35.1.235
 
109. Sudisha J., Sharathchandra R.G., Amruthesh K.N., Kumar A., Shetty H.Sh. 2012. Pathogenesis Related Proteins in Plant Defense Response. Chapter 17. In: Plant Defence, Publisher. Eds. J.M. Merillon, K.G. Ramawat.Springer Publications : 379-403.
https://doi.org/10.1007/978-94-007-1933-0_17
 
110. Vlot A.C., Dempsey D.A., Klessig D.F. 2009. Salicylic Acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47 : 177-206.
https://doi.org/10.1146/annurev.phyto.050908.135202
 
111. Vranova E., Inze D., van Breusegem F. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53 : 1227-1236.
https://doi.org/10.1093/jexbot/53.372.1227
 
112. Wang C., El-Shetehy M., Shine M.B., Yu K., Navarre D., Wendehenne D. 2014. Free radicals mediate systemic acquired resistance. Cell Rep. 7 : 348-355.
https://doi.org/10.1016/j.celrep.2014.03.032
 
113. Wang L.J., S.H. Li. 2006. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci. 170 : 685-694.
https://doi.org/10.1016/j.plantsci.2005.09.005
 
114. Ward E.R. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell. 3 : 1085-1094.
https://doi.org/10.1105/tpc.3.10.1085
 
115. Wees van S.C.M., Swart de E.A.M. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 97 : 8711-8716.
https://doi.org/10.1073/pnas.130425197
 
116. Wendehenne D., Durner J., Chen Z., Klessing D.E. 1998. Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochemistry. 47 : 651-657.
https://doi.org/10.1016/S0031-9422(97)00604-3
 
117. Wendehenne D., Gao Q.M., Kachroo A., Kachroo P. 2014. Free radical-mediated systemic immunity in plants. Curr. Opin. Plant Biol. 20 : 127-134.
https://doi.org/10.1016/j.pbi.2014.05.012
 
118. White R.F. 1979. Acetilsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology. 99 : 410-412.
https://doi.org/10.1016/0042-6822(79)90019-9
 
119. Xie Z., Chen Z. 2009. Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiol. 120 : 217-226.
https://doi.org/10.1104/pp.120.1.217
 
120. Yoshioka H. 2001. Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol. Plant-Microbe Interact. 14 : 725-736.
https://doi.org/10.1094/MPMI.2001.14.6.725