Вісн. Харків. нац. аграрн. ун-ту. Сер. Біологія, 2018, вип. 2 (44), с. 18-40


https://doi.org/10.35550/vbio2018.02.018




ФІТОГОРМОНИ І СИГНАЛЬНІ ПОСЕРЕДНИКИ В РЕГУЛЯЦІЇ ПРОДИХОВОГО АПАРАТУ


Ю. Є. Колупаєв1, 2, Т. О. Ястреб1, О. І. Кокорев1

1Харківський національний аграрний університет ім. В.В. Докучаєва
(Харків, Україна)
E-mail:
plant_biology@ukr.net
2Харківський національний університет ім. В.Н. Каразіна
(Харків, Україна)


В огляді акцентується увага на різних, в тому числі мінорних, шляхах регуляції стану продихового апарату, а також на механізмах функціональної взаємодії численних агентів, що впливають на апертуру продихів. Розглянуто механізми регуляції продихового апарату рослин за дії стресових фітогормонів (абсцизової (АБК), жасмонової і саліцилової кислот, етилену) та сигнальних посередників – газотрансмітерів (оксиду азоту (NO), сірководню (H2S), монооксиду вуглецю (CO )). Відзначається, що кінцевим результатом дії стресових гормонів є відкривання аніонних і K+out каналів, що призводить до виходу іонів із замикаючих клітин і закривання продихів. Посередниками у реалізації дії фітогормонів на замикаючі клітини є пероксид водню, оксид азоту, сірководень та іони кальцію. Обговорюється роль транскрипційного фактора MYC2/JIN1 в реалізації продихових ефектів АБК. Наводяться дані про вплив різних екзогенних джерел оксиду азоту на стан продихів. Відзначається, що ефекти NO на продиховий апарат можуть бути опосередковані цГМФ, цАДФ-рибозою і кальцієм. Дія сірководню на продихову апертуру реалізується за участю оксиду азоту та інших посередників. Закривання продихів може індукувати і монооксид вуглецю при функціональній взаємодії з активними формами кисню. Обговорюється взаємний вплив сигнальних і гормональних посередників при контролі стану продихів.


Ключові слова: продихи, абсцизова кислота, жасмонова кислота, саліцилова кислота, етилен, оксид азоту, сірководень, монооксид вуглецю

 


ЛІТЕРАТУРА


1. Bakakina Y.S., Kolesneva E.V., Dubovskaya L.V., Volotovski I.D. 2011. Nitric oxide and cyclic guanozine 3',5'-monophosphte mediate temperature stresses-induced Ca2+-responses in Arabidopsis thaliana seedlings. Vestsi Nats. Akademii Navuk Belarusi. Ser. Biyal. Navuk. 1 : 50-56.
 
2. Vasyukova N.I., Ozeretskovskaya O.L. 2007. Induced plant resistance and salicylic acid: A review. Appl. Biochem. Microbiol. (Prikladnaya Biokhimiya i Mikrobiologiya). 43 (4) : 367-373.
https://doi.org/10.1134/S0003683807040011
 
3. Glyan'ko A.K., Vasil'eva G.G. 2010. Reactive oxygen and nitrogen species in legume-rhizobial symbiosis: A review. Appl. Biochem. Microbiol. (Prikladnaya Biokhimiya i Mikrobiologiya). 46 (1) : 15-22.
https://doi.org/10.1134/S0003683810010023
 
4. Glyan'ko A.K., Mitanova N.B., Stepanov A.V. 2012. Influence of environmental factors on the generation of nitric oxide in the roots of etiolated pea seedlings. Appl. Biochem. Microbiol. (Prikladnaya Biokhimiya i Mikrobiologiya). 48 (1) : 83-89.
https://doi.org/10.1134/S0003683812010061
 
5. Karpets Yu.V., Kolupaev Yu.E., Vayner A.A. 2015. Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 62 (1) : 65-70.
https://doi.org/10.1134/S1021443714060090
 
6. Kolupaev Yu.E., Karpets Yu.V. 2010. Formirovanie adaptivnykh reaktsij rastenij na dejstvie abioticheskikh stressorov. Kiev : 350 p.
 
7. Kolupaev Yu.E., Yastreb T.O., Lugova G.A. 2016. Role of jasmonates in plant adaptation to abiotic stressors. Fiziologiya rastenii i genetika. 48 (2) : 105-121.
https://doi.org/10.15407/frg2016.02.095
 
8. Kolupaev Yu.Ye., Yastreb T.O. 2013. Stress-protective effects of salicylic acid and its structural analogues. Fiziologiya rastenii i genetika. 45 (2) : 113-126.
 
9. Krasylenko Y.A., Yemets A.I., Blume Y.B. 2010. Functional role of nitric oxide in plants. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 57 (4) : 451-461.
https://doi.org/10.1134/S1021443710040011
 
10. Kudoyarova G.R., Kholodova V.P., Veselov D.S. 2013. Current state of the problem of water relations in plants under water deficit. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 60 (2) : 165-175.
https://doi.org/10.1134/S1021443713020143
 
11. Mamaeva A.S., Fomenkov A.A., Nosov A.V., Moshkov I.E., Novikova G.V., Mur L.A.J., Hall M.A. 2015. Regulatory role of nitric oxide in plants. Russ. J. Plant Physiol. (Fiziologiya Rastenii).62 (4) : 427-440.
https://doi.org/10.1134/S1021443715040135
 
12. Novikova G.V., Stepanchenko N.S., Nosov A.V., Moshkov I.E. 2009. At the beginning of the route: ABA perception and signal transduction in plants. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 56 (6) : 727-741.
https://doi.org/10.1134/S1021443709060028
 
13. Savchenko T.V., Zastrijnaja O.M., Klimov V.V. 2014. Oxylipins and plant abiotic stress resistance. Biochemistry (Mosk.). (Biokhimiya). 79 (4) : 362-375.
https://doi.org/10.1134/S0006297914040051
 
14. Zhang H., Wang M.J., Hu L.Y., Wang S.H., Hu K.D., Bao L.J., Luo J.P. 2010. Hydrogen sulfide promotes wheat seed germination under osmotic stress. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 57 (4) : 532-539.
https://doi.org/10.1134/S1021443710040114
 
15. Chirkova T.V. 2002. Fiziologicheskie osnovy ustoichivosti rastenii. Sanct-Peterburg : 244 p.
 
16. Sharipova G.V., Veselov D.S., Kudoyarova G.R., Timergalin M.D., Wilkinson S. 2012. Effect of ethylene perception inhibitor on growth, water relations, and abscisic acid content in wheat plants under water deficit. Russ. J. Plant Physiol. (Fiziologiya Rastenii). 59 (4) : 573-580.
https://doi.org/10.1134/S1021443712040127
 
17. Iakovenko O.M., Kretynin S.V., Kabachevskaya E.M., Lyakhnovich G.V., Volotovski D.I., Kravets V.S. 2008. Role of phospholipase C in ABA regulation of stomata function. Ukr. Botan. J. 65 (4) : 605-613.
 
18. Yastreb T.O., Kolupaev Yu.E., Lugovaya A.A., Dmitriev A.P. 2016. Content of osmolytes and flavonoids under salt stress in Arabidopsis thaliana plants defective in jasmonate signaling. Appl. Biochem. Microbiol. (Prikladnaya Biokhimiya i Mikrobiologiya). 52 (2) : 210-215.
https://doi.org/10.1134/S0003683816020186
 
19. Yastreb Т.О., Kolupaev Yu.Е., Karpets Yu.V., Dmitriev O.P. 2017. Response of stomatal apparatus of arabidopsis plants defective in jasmonate signaling to abscisic acid and methyl jasmonate action. Bull. Kharkiv. Natl. Agrar. Univ. Ser. Biology. (Visn. Kharkiv. Natsional. Agrarn. Univer. Ser. Biologiya). 3 (42) : 72-80.
 
20. Yastreb T.O., Kolupaev Yu.E., Lugo¬vaya A.A., Dmitriev A.P. 2017. Formation of adaptive reactions in Arabidopsis thaliana wild-type and mutant jin1 plants under action of abscisic acid and salt stress. Cytol. Genet. (Tsitologiya i Genetika). 51 (5) : 325-330.
https://doi.org/10.3103/S0095452717050115
 
21. Yastreb Т.О., Kolupaev Yu.Е., Kokorev А.I., Gorelova Е.I., Dmitriev А.P. (in press). Methyl jasmonate and nitric oxide in regulation of stomatal apparatus of Arabidopsis thaliana. Cytol. Genet. (Tsitologiya i Genetika). (in press).
 
22. Abeles F.B., Morgan P.W., Saltveit M.E. 1992. Ethylene in Plant Biology. Academic Press, San Diego, CA, USA.
 
23. Achard P., Vriezen, W., van der Straeten D., Harberd N. 2003. Ethylene regulates arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell. 15 : 2816-2825.
https://doi.org/10.1105/tpc.015685
 
24. Agrawal G.K., Tamogami S., Han O., Iwahashi H, Rakwal R. 2004. Rice octadecanoid pathway. Biochem. Biophys. Res. Commun. 317 : 1-15.
https://doi.org/10.1016/j.bbrc.2004.03.020
 
25. Arora D., Bhatla S.C. 2015. Nitric oxide triggers a concentration-dependent differential modulation of superoxide dismutase (FeSOD and Cu/ZnSOD) activity in sunflower seedling roots and cotyledons as an early and long. Plant Signal Behav. 10 : e1071753. Doi: 10.1080/15592324.2015.1071753
https://doi.org/10.1080/15592324.2015.1071753
 
26. Arora D., Jain P., Singh N., Kaur H., Bhatla S.C. 2016. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radical Res. 50 : 291-303.
https://doi.org/10.3109/10715762.2015.1118473
 
27. Bai X.G., Chen J.H., Kong X.X., Todd C.D., Yang Y.P., Hu X.Y., Li D.Z. 2012. Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxidemediated glutathione homeostasis. Free Radical Biol. Med. 53 : 710-720.
https://doi.org/10.1016/j.freeradbiomed.2012.05.042
 
28. Baudouin E. 2011. The language of nitric oxide signaling. Plant Biol. 13 : 233-242.
https://doi.org/10.1111/j.1438-8677.2010.00403.x
 
29. Brosché M., Merilo E., Mayer F., Pechter P., Puzõrjova I., Brader G., Kangasjärvi J., Kollist H. 2010. Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance. Plant Cell Environ. 33 : 914-925.
https://doi.org/10.1111/j.1365-3040.2010.02116.x
 
30. Chen Z., Zheng Z., Huang J. Lai Z., Fan B. 2009. Biosynthesis of salicylic acid in plants. Plant Signal. Behav. 4 : 493-496.
https://doi.org/10.4161/psb.4.6.8392
 
31. Chen J., Wu F.H., Wang W.H., Zheng C.J., Lin G.H., Dong X.J., He J.X., Pei Z.M., Zheng H.L. 2011. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiolredox modification in Spinaciaoleracea seedlings. J. Exp. Bot. 62 : 4481-4493.
https://doi.org/10.1093/jxb/err145
 
32. Chernys J.T., Zeevaart J.A.D. 2000. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol. 124 : 343-354.
https://doi.org/10.1104/pp.124.1.343
 
33. Cho D., Shin D., Jeon B.W., Kwak J.M. 2009. ROS-mediated ABA signaling. J. Plant Biol. 52 : 102-113.
https://doi.org/10.1007/s12374-009-9019-9
 
34. Christou A., Filippou P., Manganaris G., Fotopoulos V. 2014. Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol. 14 : 42. Doi:10.1186/1471-2229- 14-42
https://doi.org/10.1186/1471-2229-14-42
 
35. Corpas F.J., Barroso J.B. 2017. Nitric oxide synthase-like activity in higher plants Nitric Oxide. 68 : 5-6.
https://doi.org/10.1016/j.niox.2016.10.009
 
36. Correa-Aragunde N., Graziano M., Lamattina L. 2004. Nitric oxide plays a central role in determining lateral root development in tomato. Planta. 218 : 900-917.
https://doi.org/10.1007/s00425-003-1172-7
 
37. Crawford N.M. 2005. Mechanisms for nitric oxide synthesis in plants. J. Exp. Bot. 57 : 471-478.
https://doi.org/10.1093/jxb/erj050
 
38. Cui W., Fu G., Wu H., Shen W. 2011. Cadmium-induced heme oxygenase-1 gene expression is associated with the depletion of glutathione in the roots of Medicago sativa. Biometals. 24.: 93-103.
https://doi.org/10.1007/s10534-010-9377-2
 
39. Dat J.F., Lopez-Delgado H.L., Foyer C.H., Scott I.M. 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol. 116 : 1351-1357.
https://doi.org/10.1104/pp.116.4.1351
 
40. de Ollas C., Dodd I.C. 2016. Physiological impacts of ABA-JA interactions under water-limitation. Plant Mol. Biol. 91 : 641-650.
https://doi.org/10.1007/s11103-016-0503-6
 
41. del Giudice J., Cam Y., Damiani I., Fung-Chat F., Meilhoc E., Bruand C., Brouquisse R., Puppo A., Boscari A. 2011. Nitric oxide is required for an optimal establishment of the Medicago truncatula - Sinorhizobium meliloti symbiosis. New Phytol. 191 : 405-417.
https://doi.org/10.1111/j.1469-8137.2011.03693.x
 
42. Delledonne M., Xia Y., Dixon R.A.L. 1998. Nitric oxide functions as a signal in plant disease resistance. Nature. 394 : 585-588.
https://doi.org/10.1038/29087
 
43. Delledonne М., Zeier J., Marocco A., Lamb C. 2001. Signal interactions be-tween nitric oxide and reactive oxygen intermediates in the plant hypersen-sitive disease resistance response. Proc. Natl. Acad. Sci. USA. 98. : 13454-13459.
https://doi.org/10.1073/pnas.231178298
 
44. Desikan R., Griffiths R., Hancock J., Neill S. 2002. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 99 : 16314-16318.
https://doi.org/10.1073/pnas.252461999
 
45. Desikan R., Cheung M.K., Bright J., Henson D., Hancock J.T., Neill S.J. 2004. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J. Exp. Bot. 55 : 205-212.
https://doi.org/10.1093/jxb/erh033
 
46. Desikan R., Last K., Harrett-Williams R., Tagliavia C., Harter K., Hooley R., Hancock J.T., Neill S.J. 2006. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J. 47 : 907-916.
https://doi.org/10.1111/j.1365-313X.2006.02842.x
 
47. Ding H., Han Q., Ma D., Hou J., Huang X,. Wang C., Xie Y., Kang G., Guo T. 2018. Characterizing physiological and proteomic analysis of the action of H2S to mitigate drought stress in young seedling of wheat. Plant Mol. Biol. Rep. 36 : 45. Doi.org/10.1007/s11105-017-1055-x
https://doi.org/10.1007/s11105-017-1055-x
 
48. Dombrecht B., Xue G.P., Sprague S.J., Kirkegaard J.A., Ross J.J., Reid J.B., Fitt G.P., Sewelam N., Schenk P.M., Manners J.M., Kazan K. 2007. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell. 19 : 2225-2245.
https://doi.org/10.1105/tpc.106.048017
 
49. Du H., Liu H., Xiong L. 2013. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front. Plant Sci. 4 : 397.
https://doi.org/10.3389/fpls.2013.00397
 
50. Duan B., Ma Y., Jiang M., Yang F., Ni L., Lu W. 2015. Improvement of photosynthesis in rice (Oryza sativa L.) as a result of an increase in stomatal aperture and density by exogenous hydrogen sulfide treatment. Plant Growth Regul. 75 : 33-44.
https://doi.org/10.1007/s10725-014-9929-5
 
51. Durner J., Wendehemme D., Klessig D.F. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA. 95 : 10328-10333.
https://doi.org/10.1073/pnas.95.17.10328
 
52. Fang H.H., Pei Y.X., Tian B.H., Zhang L.P., Qiao Z.J., Liu Z.Q. 2014. Ca2+ participates in H2S induced Cr6+ tolerance in Setaria italica. Chin. J. Cell Biol. 36 : 758-765.
 
53. Gisk B., Yasui Y., Kohchi T., Frankenberg-Dinkel N. 2010. Characterization of the haem oxygenase protein family in Arabidopsis thaliana reveals a diversity of functions. Biochem. J. 425 : 425-434.
https://doi.org/10.1042/BJ20090775
 
54. Hamayun M., Khan S.A., Shinwari Z.K., Lee I.J., Khan S.A., Shinwari Z.K. 2010. Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pak. J. Bot. 42 : 977-986.
 
55. Han B., Yang Z., Xie Y., Nie L., Cui J., Shen W. 2014. Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. Mol. Plant. 7 : 388-403.
https://doi.org/10.1093/mp/sst122
 
56. Hao F., Zhao S., Dong H., Zhang H., Sun L., Miao C. 2010. Nia1 and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis. J. Integr. Plant Biol. 52 : 298-307.
https://doi.org/10.1111/j.1744-7909.2010.00920.x
 
57. Hara M., Furukawa J., Sato A., Mizoguchi T., Miura K. 2012. Abiotic stress and role of salicylic acid in plants. In: Abiotic stress responses in plants. Eds. P. Ahmad, M.N.V. Prasad. New York, Dordrecht, Heidelberg, London: Springer : 235-251.
https://doi.org/10.1007/978-1-4614-0634-1_13
 
58. Hayat Q., Hayat S., Irfan M., Ahmad A. 2010. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot. 68 : 14-25.
https://doi.org/10.1016/j.envexpbot.2009.08.005
 
59. He J.M., Xu H., She X.P., Song X., Zhao W.M. 2005. The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Funct. Plant Biol. 32 : 237-247.
https://doi.org/10.1071/FP04185
 
60. Hirayama T., Ohto C., Mizoguchi T., Shinozaki K. 1995. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 92 : 3903-3907.
https://doi.org/10.1073/pnas.92.9.3903
 
61. Honda K., Yamada N., Yoshida R., Ihara H., Sawa T., Akaike T., Iwai S. 2015. 8-Mercapto-Cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis. Plant Cell Physiol. 56 : 1481-1489.
https://doi.org/10.1093/pcp/pcv069
 
62. Hou Z.H., Liu J., Hou L.X., Li X.D., Liu X. 2011. H2S may function downstream of H2O2 in jasmonic acid-induced stomatal closure in Vicia faba. Chin. Bull. Bot. 46 : 396-406.
https://doi.org/10.3724/SP.J.1259.2011.00396
 
63. Hsu Y.Y., Kao C.H. 2011. Nitric oxide is involved in methyl jasmonate induced lateral root formation in rice. Crop Environ. Bioinformatics. 8 : 160-167.
 
64. Hu Y., Jiang L., Wang F., Yu D. 2013. Jasmonate regulates the inducer of CBF expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell. 25 : 2907-2924.
https://doi.org/10.1105/tpc.113.112631
 
65. Hu K.D., Tang J., Zhao D.L., Hu L.Y., Li Y.H., Liu Y.S., Jones R., Zhang H. 2014. Stomatal closure in sweet potato leaves induced by sulfur dioxide involves H2S and NO signaling pathways. Biol. Plant. 58 : 676-680.
https://doi.org/10.1007/s10535-014-0440-7
 
66. Hyun Y., Lee I. 2008. Generating and maintaining jasmonic acid in Arabidopsis. Plant Signal. Behav. 3 : 798-800.
https://doi.org/10.4161/psb.3.10.5875
 
67. Israelsson M., Siegel R.S., Young J., Hashimoto M., Iba K., Schroeder J.I. 2006. Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr. Opin. Plant Biol. 9 : 654-663.
https://doi.org/10.1016/j.pbi.2006.09.006
 
68. Jin Q., Cui W., Xie Y., Shen W. 2016. Carbon monoxide: A ubiquitous gaseous signaling molecule in plants. In: Gasotransmitters in Plants. Signaling and communication in plants. Eds. L. Lamattina, C. Garcia-Mata. Springer, Cham : 3-19.
https://doi.org/10.1007/978-3-319-40713-5_1
 
69. Jin Z., Xue S., Luo Y., Tian B., Fang H., Li H., Pei Y. 2013. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem. 62 : 41-46.
https://doi.org/10.1016/j.plaphy.2012.10.017
 
70. Jin Z.P., Shen J.J., Qiao Z.J., Yang G.D., Wang R., Pei Y.X. 2011. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 414 : 481-486.
https://doi.org/10.1016/j.bbrc.2011.09.090
 
71. Jin Z., Xue S., Luo Y., Tian B., Fang H., Li H., Pei Y. 2013. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol. Biochem. 62 : 41-46.
https://doi.org/10.1016/j.plaphy.2012.10.017
 
72. Jin Z., Wang Z., Ma Q., Sun L., Zhang L., Liu Z., Liu D., Hao X., Pei Y. 2017. Hydrogen sulfide mediates ion fluxes inducing stomatal closure in response to drought stress in Arabidopsis thaliana. Plant Soil. Doi 10.1007/s11104-017-3335-5
https://doi.org/10.1007/s11104-017-3335-5
 
73. Jin Z.P., Pei Y.X. 2015. Physiological implications of hydrogen sulfide in plants: Pleasant exploration behind its unpleasant odour. Oxidative Medicine and Cellular Longevity Hindawi Publishing Corporation. 2015. Article ID 397502. Doi: org/10.1155/2015/397502
https://doi.org/10.1155/2015/397502
 
74. Kaplan F., Kopka J., Haskell D.W. Zhao W., Schiller K.C., Gatzke N., Sung D.Y., Guy C.L. 2004. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol. 136 : 4159-4168.
https://doi.org/10.1104/pp.104.052142
 
75. Kazan K., Manners J.M. 2008. Jasmonate signaling: toward an integrated view. Plant Physiol. 146 : 1459-1468.
https://doi.org/10.1104/pp.107.115717
 
76. Khokon A.R., Okuma E., Hossain M.A., Munemasa S., Uraji M., Nakamura Y., Mori I.C., Murata Y. 2011. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ. 34 : 434-443.
https://doi.org/10.1111/j.1365-3040.2010.02253.x
 
77. Kolupaev Yu.E., Fіrsova E.N., Yastreb T.O. 2017. Induction of plant cells heat resistance by hydrogen sulfide donor is mediated by H2O2 generation with participation of NADPH oxidase and superoxide dismutase. Ukr. Biochem. J. 89 (4) : 34-42.
https://doi.org/10.15407/ubj89.04.034
 
78. Kramell R., Atzorn R., Schneider G., Miersch O., Brückner C., Schmidt J., Sembdner G., Parthier B. 1995. Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue. J. Plant Growth Regul. 14 : 29-36.
https://doi.org/10.1007/BF00212643
 
79. Kwak J.M., Nguyen V., Schroeder J.I. 2006. The role of reactive oxygen species in hormonal responses. Plant Physiol. 141 : 323-329.
https://doi.org/10.1104/pp.106.079004
 
80. Lackman P., González-Guzmán M., Tilleman S., Carqueijeiro I., Pérez A.C., Moses T., Seo M., Kanno Y., Häkkinen S.T., Van Montagu M.C.E., Thevelein J.M., Maaheimo H., Oksman-Caldentey K.M., Rodriguez P.L., Rischer H., Goossens A. 2011. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc. Natl. Acad. Sci. USA. 108 : 5891-5896.
https://doi.org/10.1073/pnas.1103010108
 
81. Lai D.W., Mao Y., Zhou H., Li F., Wu M., Zhang J., He Z., Cui W., Xie Y. 2014. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci. 225 : 117-129.
https://doi.org/10.1016/j.plantsci.2014.06.006
 
82. Lamotte O., Guold K., Lecourieux D., Sequeira-Legrand A., Lebrun-Garcia A., Durner J., Pugin A., Wendehenne D. 2004. Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol. 135 : 516-529.
https://doi.org/10.1104/pp.104.038968
 
83. Laxalt A.M., García-Mata C., Lamattina L. 2016. The dual role of nitric oxide in guard cells: promoting and attenuating the ABA and phospholipid-derived signals leading to the stomatal closure. Front. Plant Sci. 7 : 476.
https://doi.org/10.3389/fpls.2016.00476
 
84. Lecourieux D., Mazars C., Pauly N., Ranjeva R., Pugin A. 2002. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell. 14 : 2627-2641.
https://doi.org/10.1105/tpc.005579
 
85. Lee J.S. 1998. The mechanism of stomatal closing by salicylic acid in Commelina communis L. J. Plant Biol. 41 : 97-102.
https://doi.org/10.1007/BF03030395
 
86. Lee Y., Kim Y.W., Jeon B.W., Park K.Y., Suh S.J., Seo J., Kwak J.M., Martinoia E., Hwang I., Lee Y. 2007. Phosphatidylinositol 4,5-bisphosphate is important for stomatal opening. Plant J. 52 : 803-816.
https://doi.org/10.1111/j.1365-313X.2007.03277.x
 
87. Levchenko V., Guinot D.R., Klein M., Roelfsema M.R., Hedrich R., Dietrich P. 2008. Stringent control of cytoplasmic Ca2+ in guard cells of intact plants compared to their counterparts in epidermal strips or guard cell protoplasts. Protoplasma. 233 : 61-72.
https://doi.org/10.1007/s00709-008-0307-x
 
88. Li Z.G. 2013. Hydrogen sulfide: a multifunctional gaseous molecule in plants. Russ. J. Plant Physiol. 60 : 733-740
https://doi.org/10.1134/S1021443713060058
 
89. Li Z.G., Luo L.J., Zhu L.P. 2014a. Involvement of trehalose in hydrogen sulfide donor sodium hydrosulfide-induced the acquisition of heat tolerance in maize (Zea mays L.) seedlings. Bot. Stud. 55 : 20.
https://doi.org/10.1186/1999-3110-55-20
 
90. Li Z.G., Yi X.Y., Li Y.T. 2014b. Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. Biologia. 69 : 1001-1009.
https://doi.org/10.2478/s11756-014-0396-2
 
91. Li Z.G., Min X., Zhou Z.H. 2016. Hydrogen sulfide: A signal molecule in plant cross-adaptation. Front. Plant Sci. 7 : 1621. Doi: 10.3389/fpls.2016.01621
https://doi.org/10.3389/fpls.2016.01621
 
92. Li Z.G., Zhu L.P. 2014. Hydrogen sulfide donor sodium hydrosulfide-induced accumulation of betaine is involved in the acquisition of heat tolerance in maize seedlings. Braz. J. Bot. 38 : 31-38.
https://doi.org/10.1007/s40415-014-0106-x
 
93. Lindermayr C., Saalbach G., Durner J. 2005. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol. 137 : 921-930.
https://doi.org/10.1104/pp.104.058719
 
94. Ling T., Zhang B., Cui W., Wu M., Lin J., Zhou W., Huang J., Shen W. 2009. Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction. Plant Sci. 177 : 331-340.
https://doi.org/10.1016/j.plantsci.2009.06.004
 
95. Lisjak M., Srivastava N., Teklic T., Civale L., Lewandowski K., Wilson I., Wood M.E., Whiteman M., Hancock J.T. 2010. A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol. Biochem. 48 : 931-935.
https://doi.org/10.1016/j.plaphy.2010.09.016
 
96. Lisjak M., Teklić T., Wilson I.D., Wood M.E., Whiteman M., Hancock J.T. 2011. Hydrogen sulfide effects on stomatal apertures. Plant Signal. Behav. 6 : 1444-1446,
https://doi.org/10.4161/psb.6.10.17104
 
97. Liu Y., Hao Y., Liu Y., Huang W. 2005. Effects of wounding and exogenous jasmonic acid on the peroxidation of membrane lipid in pea seedlings leaves. Agr. Sci. China. 4 : 614-620.
 
98. Liu K., Xu S., Xuan W., Ling T., Cao Z., Huang B., Sun Y., Fang L., Liu Z., Zhao N., Shen W. 2007. Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci. 172 : 544-555.
https://doi.org/10.1016/j.plantsci.2006.11.007
 
99. Liu Y., Xu S., Ling T., Xu L., Shen W. 2010. Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway. J. Plant Physiol. 167 : 1371-1379.
https://doi.org/10.1016/j.jplph.2010.05.021
 
100. Liu J., Hou Z.H., Liu G.H., Hou L.X., Liu X. 2012. Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stomatal closure in Vicia faba L. J. Integr.Agricult. 11 : 1644-1653.
https://doi.org/10.1016/S2095-3119(12)60167-1
 
101. Lorenzo O., Chico J.M., Sanchez-Serrano J.J., Solano R. 2004. Jasmonate-insensitive1 encodes a MYC transcription factor essential to discriminate between different jasmonate regulated defence responses in Arabidopsis. Plant Cell. 16 : 1938-1950.
https://doi.org/10.1105/tpc.022319
 
102. Lozano-Juste J., Leon J. 2010. Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol. 152 : 891-903.
https://doi.org/10.1104/pp.109.148023
 
103. Marino D., Dunand C., Puppo A., Pauly N. 2012. A burst of plant NADPH oxidases. Trends Plant Sci. 17 : 9-15.
https://doi.org/10.1016/j.tplants.2011.10.001
 
104. Mauch-Mani B., Metraux J.P. 1998. Salicylic acid and systemic acquired resistance to pathogen attack. Ann. Bot. 82 : 535-540.
https://doi.org/10.1006/anbo.1998.0726
 
105. Mauch-Mani B., Slusarenko A.J. 1996. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell. 8 : 203-212.
https://doi.org/10.1105/tpc.8.2.203
 
106. Melotto M., Underwood W., Koczan J., Nomura K., He S.Y. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell. 126 : 969-980.
https://doi.org/10.1016/j.cell.2006.06.054
 
107. Melotto M., Underwood W., He S.Y. 2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46 : 101-122.
https://doi.org/10.1146/annurev.phyto.121107.104959
 
108. Meng D.K., Chen J., Yang Z. 2011. Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide. J. Hazard Mater. 186 : 1823-1829.
https://doi.org/10.1016/j.jhazmat.2010.12.062
 
109. Miura K., Okamoto H., Okuma E., Shiba H., Kamada H., Hasegawa P.M., Murata Y. 2013. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J. 73 : 91-104.
https://doi.org/10.1111/tpj.12014
 
110. Montillet J.L., Leonhardt N., Mondy S., Tranchimand S., Rumeau D., Boudsocq M., Garcia A.V., Douki T., Bigear J., Lauriere C., Chevalier A., Castresana C., Hirt H. 2013. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLOS Biol. 11 (3) : e1001513.
https://doi.org/10.1371/journal.pbio.1001513
 
111. Morgan P.W., Drew M.C. 1997. Ethylene and plant responses to stress. Physiol. Plant. 100 : 620-630.
https://doi.org/10.1034/j.1399-3054.1997.1000325.x
 
112. Mori I.C., Pinontoan R., Kawano T., Muto S. 2001. Involvement of superox-ide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol. 42 : 1383-1388.
https://doi.org/10.1093/pcp/pce176
 
113. Munemasa S., Oda K., Watanabe-Sugimoto M., Nakamura Y., Shimoishi Y., Murata Y. 2007. The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 143 : 1398-1407.
https://doi.org/10.1104/pp.106.091298
 
114. Munemasa S., Mori I.C., Murata Y. 2011. Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signal. Behav. 6 : 939-941.
https://doi.org/10.4161/psb.6.7.15439
 
115. Mur L.A.J., Mandon J., Persijn S., Cristescu S.M., Moshkov I.E., Novikova G.V., Hall M.A., Harren F.J.M., Hebelstrup K.H., Gupta K.J. 2013. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5 : Pls052. Doi: 10.1093/aobpla/pls052
https://doi.org/10.1093/aobpla/pls052
 
116. Neill S.J., Burnett E.C. 1999. Regulation of gene expression during water deficit stress. Plant Growth Regul. 29 : 23-33.
https://doi.org/10.1023/A:1006251631570
 
117. Neill S.J., Desikan R., Clarke A., Hancock J.T. 2002. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol. 128 : 13-16.
https://doi.org/10.1104/pp.010707
 
118. Neill S., Bright J., Desikan R., Hancock J., Harrison J., Wilson I. 2008. Nitric oxide evolution and perception. J. Exp. Bot. 59 : 25-35.
https://doi.org/10.1093/jxb/erm218
 
119. Pandey S. 2014. Hydrogen sulfide: A new node in the abscisic acid-dependent guard cell signaling network? Plant Physiol. 166 : 1680-1681.
https://doi.org/10.1104/pp.114.251686
 
120. Pandey S., Nelson D.C., Assmann S.M. 2009. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell. 136 : 136-148.
https://doi.org/10.1016/j.cell.2008.12.026
 
121. Papanatsiou M., Scuffi D., Blatt M.R., García-Mata C. 2015. Hydrogen sulfide regulates inward-rectifying K+ channels in conjunction with stomatal closure. Plant Physiol. 168 : 29-35.
https://doi.org/10.1104/pp.114.256057
 
122. Raghavendra A.S., Gonugunta V.K., Christmann A., Grill E. 2010. ABA perception and signalling. Trends Plant Sci. 15 : 395-401.
https://doi.org/10.1016/j.tplants.2010.04.006
 
123. Pernas M., Garcia-Casado G., Rojo E., Solano R., Sanchez-Serrano J.J. 2007. A protein phosphatase 2A catalitic subunit is a negative regulator of abscisic acid signalling. Plant J. 51 : 763-778.
https://doi.org/10.1111/j.1365-313X.2007.03179.x
 
124. Roelfsema M.R.G., Hedrich R. 2005. In the light of stomatal opening: new insights into "The Watergate". New Phytol. 167 : 665-691.
https://doi.org/10.1111/j.1469-8137.2005.01460.x
 
125. Roszer T. 2014. Biosynthesis of nitric oxide in plants. In: Nitric Oxide in Plants: Metabolism and Role in Stress Physiology. Eds. M.N. Khan et al. Springer International Publishing Switzerland : 17-32.
https://doi.org/10.1007/978-3-319-06710-0_2
 
126. Santa-Cruz D.M., Pacienza N.A., Polizio A.H., Balestrasse K.B., Tomaro M.L., Yannarelli G.G. 2010. Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean plants. Phytochem. 71 : 1700-1707.
https://doi.org/10.1016/j.phytochem.2010.07.009
 
127. Santino A., Taurino M., De Domenico S., Bonsegna S., Poltronieri P., Pastor V., Flors V. 2013. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep. 32 : 1085-1098.
https://doi.org/10.1007/s00299-013-1441-2
 
128. Scuffi D., Álvarez C., Laspina N., Gotor C., Lamattina L., García-Mata C. 2014. Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. Plant Physiol. 166 : 2065-2076.
https://doi.org/10.1104/pp.114.245373
 
129. Scuffi D., Nietzel T., Di Fino L.M., Meyer A.J., Lamattina L., Schwarzländer M., Laxalt A.M., García-Mata C. 2018. Hydrogen sulfide 10 increases production of NADPH oxidase-dependent hydrogen peroxide and phospholipase D-derived phosphatidic acid in guard cell signaling. Plant Physiol. (In press) Doi:10.1104/pp.17.01636
https://doi.org/10.1104/pp.17.01636
 
130. Sembdner G., Parthier B. 1993. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44 : 569-589.
https://doi.org/10.1146/annurev.pp.44.060193.003033
 
131. Shan C., Zhang S., Ou X. 2018. The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. Protoplasma. (In press) Doi: 10.1007/s00709-018-1213-5
https://doi.org/10.1007/s00709-018-1213-5
 
132. She X.P., Song X.G. 2008. Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells. J. Integr. Plant. Biol. 50 : 1539-1548.
https://doi.org/10.1111/j.1744-7909.2008.00716.x
 
133. Shekhawat G.S., Verma K. 2010. Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. J. Exp. Bot. 61 : 2255-2270.
https://doi.org/10.1093/jxb/erq074
 
134. Shen Y., Tang M.J., Hu Y.L., Lin Z.P. 2004. Isolation and characterization of a dehydrin-like gene from drought-tolerant Boea crassifolia. Plant Sci. 166 : 1167-1175.
https://doi.org/10.1016/j.plantsci.2003.12.025
 
135. Shi H., Ye T., Chan Z. 2013. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L.). Pers.). Plant Physiol. Biochem. 71 : 226-234.
https://doi.org/10.1016/j.plaphy.2013.07.021
 
136. Shi H., Ye T., Chan Z. 2014. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol. Biochem. 74 : 99-107.
https://doi.org/10.1016/j.plaphy.2013.11.001
 
137. Shi F.M., Li Y.Z. 2008. Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase. BMB Rep. 41 : 79-85.
https://doi.org/10.5483/BMBRep.2008.41.1.079
 
138. Sokolovski S., Hill A., Gay R., Garcia-Mata C., Lamattina L., Blatt M.R. 2005. Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant J. 43 : 520-529.
https://doi.org/10.1111/j.1365-313X.2005.02471.x
 
139. Sokolovski S., Blatt M.R. 2004. Nitric oxide block of outwardrectifying K+ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol. 136 : 4275-4284.
https://doi.org/10.1104/pp.104.050344
 
140. Staswick P.E., Tiryaki I. 2004. The oxylipin signal jasmonic acid isactivated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell. 16 : 2117-2127.
https://doi.org/10.1105/tpc.104.023549
 
141. Suhita D., Kolla V.A., Vavasseur A., Raghavendra A.S. 2003. Different signaling pathways involved during the suppression of stomatal opening by methyl jasmonate or abscisic acid. Plant Sci. 164 : 481-488.
https://doi.org/10.1016/S0168-9452(02)00432-6
 
142. Suhita D., Raghavendra A.S., Kwak J.M., Vavasseur A. 2004. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 134 : 1536-1545.
https://doi.org/10.1104/pp.103.032250
 
143. Takahashi F., Yoshida R., Ichimura K. , Mizoguchi T., Seo S., Yonezawa M., Maruyama K., Yamaguchi-Shinozaki K., Shinozaki K. 2007. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell. 19 : 805-818.
https://doi.org/10.1105/tpc.106.046581
 
144. Tanaka Y., Sano T., Tamaoki M., Nakajima N., Kondo N., Hasezawa S. 2005. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 138 : 2337-2343.
https://doi.org/10.1104/pp.105.063503
 
145. Tardieu F., Parent B., Simonneau T. 2010. Control of leaf growth by abscisic acid: hydraulic or non hydraulic processes? Plant Cell Environ. 33 : 636-647.
https://doi.org/10.1111/j.1365-3040.2009.02091.x
 
146. Tewari R.K., Hahn E.J., Paek K.Y. 2008. Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in Panax ginseng. Plant Cell Rep. 27 : 563-573
https://doi.org/10.1007/s00299-007-0448-y
 
147. Tian B., Qiao Z., Zhang L., Li H., Pei Y. 2016. Hydrogen sulfide and proline cooperate to alleviate cadmium stress in foxtail millet seedlings. Plant Physiol. Biochem. 109 : 293-299.
https://doi.org/10.1016/j.plaphy.2016.10.006
 
148. Ton J., Flors V., Mauch-Mani B. 2009. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14 : 310-317.
https://doi.org/10.1016/j.tplants.2009.03.006
 
149. Toum L., Torres P.S., Gallego S.M., Benavídes M.P., Vojnov A.A., Gustavo E. 2016. Gudesblat coronatine inhibits stomatal closure through guard cell-specific inhibition of NADPH oxidase-dependent ROS production. Front Plant Sci. 7 : 1851. doi: 10.3389/fpls.2016.01851
https://doi.org/10.3389/fpls.2016.01851
 
150. Vandenbussche F., van der Straeten D. 2007. One for all and all for one: crosstalk of multiple signals controlling the plant phenotype. J. Plant Growth Regul. 26 : 178-187.
https://doi.org/10.1007/s00344-007-9001-z
 
151. Vogt T. 2010. Phenylpropanoid biosynthesis. Mol. Plant. 3 : 2-20.
https://doi.org/10.1093/mp/ssp106
 
152. Wagener F.A., Volk H.D., Willis D., Abraham N.G., Soares M.P., Adema G.J., Figdor C.G. 2003. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol. Rev. 55 : 551-571.
https://doi.org/10.1124/pr.55.3.5
 
153. Wang L., Ma X., Che Y., Hou L., Liu X., Zhang W. 2015. Extracellular ATP mediates H2S-regulated stomatal movements and guard cell K+ current in a H2O2-dependent manner in Arabidopsis. Sci. Bull. 60 : 419-427.
https://doi.org/10.1007/s11434-014-0659-x
 
154. Wang L.J., Li S.H. 2006. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci. 170 : 685-694.
https://doi.org/10.1016/j.plantsci.2005.09.005
 
155. Wang P., Song C.P. 2008. Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol. 178 : 703-718.
https://doi.org/10.1111/j.1469-8137.2008.02431.x
 
156. Wang P., Du Y., Hou Y.J., Zhao Y., Hsu C.C., Yuan F., Zhu X., Tao W.A., Song C.P., Zhu J.K. 2015. Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc. Natl. Acad. Sci. USA. 112 : 613-618.
https://doi.org/10.1073/pnas.1423481112
 
157. Wang R. 2012. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 92 : 791-896.
https://doi.org/10.1152/physrev.00017.2011
 
158. Wasternack C., Hause B. 2013. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111 : 1021-1058.
https://doi.org/10.1093/aob/mct067
 
159. Wilkinson S., Davies W. 2009. Ozone suppresses soil-drying and abscisic acid (ABA)-induced stomatal closure via an ethylenedependent mechanism. Plant Cell Environ. 32 : 949-959.
https://doi.org/10.1111/j.1365-3040.2009.01970.x
 
160. Wilks S.S. 1959. Carbon monoxide in green plants. Science. 129 : 964-966.
https://doi.org/10.1126/science.129.3354.964
 
161. Williams J., Bulman M.P., Neill S.J. 1994. Wilt-induced ABA biosynthesis, gene expression and down-regulation of rbcS mRNA level in Arabidopsis thaliana. Physiol. Plant. 91 : 177-182.
https://doi.org/10.1034/j.1399-3054.1994.910207.x
 
162. Wilson I.D., Neill S.J., Hancock J.T. 2008. Nitric oxide synthesis and signalling in plants. Plant Cell Environ. 31 : 622-631.
https://doi.org/10.1111/j.1365-3040.2007.01761.x
 
163. Wu J.Y., Qu H.Y., Shang Z.L., Tao S.T., Xu G.H., Wu J., Wu H.Q., Zhang S.L. 2011. Reciprocal regulation of Ca2+-activated outward K+ channels of Pyrus pyrifolia pollen by heme and carbon monoxide. New Phytol. 189 : 1060-1068
https://doi.org/10.1111/j.1469-8137.2010.03564.x
 
164. Xie Y., Xu D., Cui W., Shen W. 2012. Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. J. Exp. Bot. 63 : 3869-3883.
https://doi.org/10.1093/jxb/ers078
 
165. Xing H., Tan L., An L., Zhao Z., Wang S., Zhang C. 2004. Evidence for the involvement of nitric oxide and reactive oxygen species in osmotic stress tolerance of wheat seedlings: inverse correlation between leaf abscisic acid accumulation and leaf water loss. Plant Growth Regul. 42 : 61-68.
https://doi.org/10.1023/B:GROW.0000014894.48683.1b
 
166. Xu Yu., Sun X., Jin J., Zhou H. 2010. Protective effect of nitric oxide on light-induced oxidative damage in leaves of tall fescue. J. Plant Physiol. 167 : 512-518.
https://doi.org/10.1016/j.jplph.2009.10.010
 
167. Xu S., Wang L., Zhang B., Han B., Xie Y., Yang J., Zhong W., Chen H., Wang R., Wang N., Cui W., Shen W. 2012. RNAi knockdown of rice SE5 gene is sensitive to the herbicide methyl viologen by the down-regulation of antioxidant defense. Plant Mol. Biol. 80 : 219-235.
https://doi.org/10.1007/s11103-012-9945-7
 
168. Yang M., Qin B.P., Ma X.L., Wang P., Li M.L., Chen L.L., Chen L.T., Sun A.Q., Wang Z.L., Yin Y.P. 2015. Foliar application of sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, can protect seedlings against heat stress in wheat (Triticum aestivum L.). J. Integr. Agricult. 15 : 2745-2758.
https://doi.org/10.1016/S2095-3119(16)61358-8
 
169. Zhang S.Y., Zhu L.S., Dong X.Y. 2015. Combined treatment of carbon monoxide and chitosan reduced peach fruit browning and softening during cold storage. Int. J. Food Sci. Tech. 4 : 477-482.
https://doi.org/10.11648/j.ijnfs.20150404.19
 
170. Zhang Y., Wang L., Liu Y., Zhang Q., Wei Q., Zhang W. 2006. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta. 224 : 545-555.
https://doi.org/10.1007/s00425-006-0242-z
 
171. Zhang F., Wang Y., Yang Y., Wu H., Wang Di., Liu J. 2007. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ. 30 : 775-785.
https://doi.org/10.1111/j.1365-3040.2007.01667.x
 
172. Zhang H., Ye Y.K., Wang S.H., Luo J.P., Tang J., Ma D.F. 2009. Hydrogen sulfide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul. 58 : 243-250.
https://doi.org/10.1007/s10725-009-9372-1
 
173. Zhao Z., Chen G., Zhang C. 2001. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Austr. J. Plant Physiol. 28 : 1055-1061.
https://doi.org/10.1071/PP00143