Вісн. Харків. нац. аграрн. ун-ту. Сер. Біологія, 2018, вип. 1 (43), с. 34-39


https://doi.org/10.35550/vbio2018.01.034




ВПЛИВ ДОНОРІВ ОКСИДУ АЗОТУ НА СТАН ПРОДИХІВ РОСЛИН АРАБІДОПСИСУ, ДЕФЕКТНИХ ЗА ЖАСМОНАТНИМ І САЛІЦИЛАТНИМ СИГНАЛІНГОМ


Т. О. Ястреб1, О. І. Кокорев1, К. М. Гавва1, Ю. Є. Колупаєв1, 2, О. П. Дмитрієв3

1Харківський національний аграрний університет ім. В.В. Докучаєва
(Харків, Україна)
2Харківський національний університет ім. В.Н. Каразіна
(Харків, Україна)
3Інститут клітинної біології та генетичної інженерії
Національної академії наук України
(Київ, Україна)


Досліджували вплив донорів оксиду азоту (нітропрусиду натрію та нітриту натрію) на стан продихів рослин арабідопсису дикого типу (Col-0), мутантів, дефектних за жасмонатним сигналінгом (jin1, coi1, jar1), і саліцилатдефіцитних трансформантів NahG. Обробка епідермісу розеткових листків донорами оксиду азоту зменшувала величину продихової апертури та кількість відкритих продихів у рослин дикого типу і у мутантів, дефектних за жасмонатним сигналінгом. У трансформантів NahG зі зниженим вмістом саліцилової кислоти під впливом донорів NO також відзначалося зменшення продихової апертури, при цьому кількість відкритих продихів за обробки нітритом натрію була значно меншою, ніж у рослин інших генотипів. Обговорюються можливі зв’язки між сигнальними посередниками і фітогормонами при регуляції продихового апарату у рослин арабідопсису.


Ключові слова: Arabidopsis thaliana, мутанти jin1, coi1, jar1, трансформанти NahG, продихи, оксид азоту (NO), жасмонова кислота, жасмонатний сигналінг, саліцилова кислота

 


ЛІТЕРАТУРА


1. Kolupaev Yu.E., Yastreb T.O., Lugova G.A. 2016. Role of jasmonates in plant adaptation to abiotic stressors. Fiziol. rast. genet. 48(2) : 95-111.
https://doi.org/10.15407/frg2016.02.095
 
2. Iakovenko O.M., Kretynin S.V., Kabachevskaya E.M., Lyakhnovich G.V., Volotovski D.I., Kravets V.S. 2008. Role of phospholipase C in ABA regulation of stomata function. Ukr. Bot. J. 65(4) : 605-613.
 
3. Yastreb T.O., Kolupaev Yu.E., Karpets Yu.V., Dmitriev A.P. 2017. Effect of nitric oxide donor on salt resistance of Arabidopsis jin1 mutants and wild-type plants. J. Plant Physiol. 64(2) : 207-214.
https://doi.org/10.1134/S1021443717010186
 
4. Bajguz A. 2014. Nitric Oxide: role in plants under abiotic stress. In: Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment, vol. 2. Eds. Ahmad P., Wani M.R. New York : Springer Science+Business Media. : 137-159.
https://doi.org/10.1007/978-1-4614-8600-8_5
 
5. Corpas F.J., Leterrier M., Valderrama R., Airaki M., Chaki M., Palma J.M., Barroso J.B. 2011. Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci. 181 : 604-611.
https://doi.org/10.1016/j.plantsci.2011.04.005
 
6. Courtois C., Besson A., Dehan J., Bourque S., Dobrowolska G., Pugin A., Wendehenne D. 2008. Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. J. Exp. Bot. 59 : 155-163.
https://doi.org/10.1093/jxb/erm197
 
7. Desikan R., Griffiths R., Hancock J., Neill S. 2002. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 99 : 16314-16318.
https://doi.org/10.1073/pnas.252461999
 
8. Dombrecht B., Xue G.P., Sprague S.J., Kirkegaard J.A., Ross J.J., Reid J.B., Fitt G.P., Sewelam N., Schenk P.M., Manners J.M., Kazan K. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell. 19 : 2225-2245.
https://doi.org/10.1105/tpc.106.048017
 
9. Gaffney T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., Ward E., Kessmann H., Ryalsm J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science. 261 : 754-756.
https://doi.org/10.1126/science.261.5122.754
 
10. Gayatri G., Agurla S., Raghavendra A.S. 2013.Nitric oxide in guard cells as an important secondary messenger during stomatal closure. Front. Plant Sci. 4 : 425.
https://doi.org/10.3389/fpls.2013.00425
 
11. Gibeaut D.M., Hulett J., Cramer G.R., Seemann J.R. 1997. Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol. 115 : 317-319.
https://doi.org/10.1104/pp.115.2.317
 
12. Hao F., Zhao S., Dong H., Zhang H., Sun L., Miao C. 2010. Nia1 and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis. J. Integr. Plant Biol. 52 : 298-307.
https://doi.org/10.1111/j.1744-7909.2010.00920.x
 
13. He J.M., Xu H., She X.P., Song X.G., Zhao W.M. 2005. The role interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Function. Plant Biol. 32 : 237-247.
https://doi.org/10.1071/FP04185
 
14. Huang X., Stettmaier K., Michel C., Hutzler P., Mueller M.J., Durner J. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta. 218 : 938-946.
https://doi.org/10.1007/s00425-003-1178-1
 
15. Liu X., Shi W., Zhang S., Lou C. 2005. Nitric oxide involved in signal transduction of jasmonic acid-induced stomatal closure of Vicia faba Chinese Sci. Bull. 50(6) : 520-525.
https://doi.org/10.1007/BF02897475
 
16. Munemasa S., Mori I.C., Murata Y. 2011. Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signal. Behav. 6(7) : 939-941.
https://doi.org/10.4161/psb.6.7.15439
 
17. Neill S.J., Desikan R., Clarke A. Hancock J.T. 2002. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol. 128 : 13-16.
https://doi.org/10.1104/pp.010707
 
18. Neill S.J., Desikan R., Hancock J.T. 2003. Nitric oxide signaling in plants. New Phytol. 159 : 11-35.
https://doi.org/10.1046/j.1469-8137.2003.00804.x
 
19. Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P., Ribeiro D. Wilson I. 2008. Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 59 : 165-176.
https://doi.org/10.1093/jxb/erm293
 
20. Oz M.T., Eyidogan F., Yucel M., Oktem H.A. 2015. Functional role of nitric oxide under abiotic stress conditions. In: Nitric Oxide Action in Abiotic Stress Responses in Plants. Eds. Khan M.N. et al. Heidelberg, New York, Dordrecht, London : 21-42.
https://doi.org/10.1007/978-3-319-17804-2_2
 
21. Ramírez V., Coego A., López A., Agorio A., Flors V., Vera P. 2009. Drought tolerance in Arabidopsis is controlled by the OCP3 disease resistance regulator. Plant J. 58 : 578-591.
https://doi.org/10.1111/j.1365-313X.2009.03804.x
 
22. Scuffi D., Lamattina L., Garcia-Mata C. 2016. Decoding the interaction between nitric oxide and hydrogen sulfide in stomatal movement. In: Gasotransmitters in Plants, Signaling and Communication in Plants. Eds. Lamattina L., Garcia-Mata C. Springer International Publishing Switzerland : 271-288.
https://doi.org/10.1007/978-3-319-40713-5_13
 
23. Wilson I.D., Neill S.J., Hancock J.T. 2008. Nitric oxide synthesis and signaling in plants. Plant Cell Environ. 31 : 622-631.
https://doi.org/10.1111/j.1365-3040.2007.01761.x
 
24. Xu M., Dong J., Zhu M. 2006. Nitric oxide mediates the fungal elicitor-induced puerarin biosynthesis in Pueraria thomsonii suspension cells through a salicylic acid (SA)-dependent and jasmonic acid (JA)-dependent signal pathway. Sci. China. Ser. C: Life Sci. 49 : 379-389.
https://doi.org/10.1007/s11427-006-2010-5
 
25. Yastreb T.O., Kolupaev Yu.E., Lugovaya A.A., Dmitriev A.P. 2017. Formation of adaptive reactions in Arabidopsis thaliana wild-type and mutant jin1 plants under action of abscisic acid and salt stress. Cytol. Genet. 51 : 325-330.
https://doi.org/10.3103/S0095452717050115