Вісн. Харків. нац. аграрн. ун-ту. Сер. Біологія, 2017, вип. 1 (40), с. 50-60


https://doi.org/10.35550/vbio2017.01.050




ВПЛИВ ВУГЛЕКИСЛОГО ГАЗУ НА СТРУКТУРУ ІЗОЛЬОВАНИХ ХЛОРОПЛАСТІВ ШПИНАТУ


М. В. Водка, О. В. Поліщук, Н. О. Білявська, О. К. Золотарьова

Інститут ботаніки ім. М.Г. Холодного
Національної академії наук України
(Київ, Україна)


Методом трансмісійної електронної мікроскопії вивчали вплив 15 хв інкубації в атмосфері з різним вмістом CO2 або N2 на ультраструктуру ізольованих хлоропластів шпинату. При цьому спостерігалися зміни у будові гран, неоднорідність упаковки тилакоїдів в гранах, що виявлялося у збільшенні люмінальних проміжків і товщини гранальних тилакоїдів порівняно з контролем. Найбільші зміни ультраструктурної будови були зареєстровані при продуванні суспензії ізольованих хлоропластів повітрям з підвищеним вмістом CO(950 ppm). Дані свідчать про те, що підвищені концентрації CO2 негативно впливають на фотосинтетичний апарат, порушуючи мембранну систему хлоропластів та можуть вказувати на структурну роль карбоангідразозалежної рівноваги СО2/HCO3 у динамічних змінах мембранної системи хлоропласта.


Ключові слова: Spinacia oleracea, грана, ізольований хлоропласт, карбоангідраза, люмін, підвищена концентрація CO2, тилакоїд

 


ЛІТЕРАТУРА


1. Vodka M.V., Polishchuk O.V., Bilyavs'ka N.O., Zolotareva E.K. 2013. Response of spinach photosynthetic apparatus to the action of heavy metals, carbonic anhydrase inhibitors Reports of the National Academy of Sciences of Ukraine. 10 : 152-158.
 
2. Vodka M.V., Polishchuk O.V., Bilyavs'ka N.O., Zolotareva E.K. 2013. Effects of heavy metals on photosynthetic apparatus and carbonic anhydrase activity in pea chloroplasts. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (30) : 46-55.
 
3. Goncharik R.G., Domanskii V.P., Shalygo N.V. 2014. The variable chlorophyll fluorescence of barley leaves (hordeum vulgare) at rising co2 content in the conditions of inhibition of carbonic anhydrase and enzymes of Calvin cycle. Viesci Nacyjanaĺnaj Akademii Navuk Bielarusi. Sieryja bijalahičnych navuk. 3 : 38-41.
 
4. Yermolayev V.S., Inochkin M.V., Puzyk I.P., Puzyk M.V. 2007. The greenhouse effect: carbon dioxide and anthropogenic factor. Obshchestvo. Sreda. Razvitiye (Terra Humana). 2 : 77-82.
 
5. Zolotareva E.K. 2009. Participation of bound bicarbonate in photosynthetic proton transport. In: Fiziolohiya roslyn: Problemy ta perspektyvy rozvytku (Plant Physiology: Challenges and Prospects for Development), vol. 2. Kyiv : 91-112.
 
6. Ivanov B.N., Ignatova L.K., Romanova A.K. 2007. Diversity in forms and functions of carbonic anhydrase in terrestrial higher plants. Russ J. Plant Physiol. 54 (2) : 143. https://doi.org/10.1134/S102144370702001X
https://doi.org/10.1134/S102144370702001X
 
7. Lakin G.F. 1990. Biometrics (Biometriya). Moscow : 352 p.
 
8. Onoiko E.B., Polishchuck A.V., Zolotareva E.K. 2010. The stimulation of photophosphorylation in isolated spinach chloroplasts by exogenous bicarbonate: the role of carbonic anhydrase. Reports of the National Academy of Sciences of Ukraine. 10 : 160-165.
 
9. Podorvanov V.V., Zolotareva E.K., Chornoshtan A.A. 2006. Participation of bicarbonate in regulation of photochemical reactions in chloroplasts higher plants. Ukrainian Phytosociological Collection. 24 : 18-25.
 
10. Semenihin A.V., Polishchuk A.V., Podorvanov V.V. 2014.Effect of heavy metals ions on the activity of carbonic anhydrase in pea chloroplast. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (32) : 23-31.
 
11. Semenikhin A.V., Vodka M.V., Polishchuk O.V. 2016. Cofactor and structural role of СО2 in chloroplasts. Ukr. Bot. J. 73 (3) : 290-397.
https://doi.org/10.15407/ukrbotj73.03.290
 
12. Arp W.J. 1991. Effects of source-sink relations on photosyn-thetic acclimation to elevated CO2. Plant Cell Environ. 14 : 869-875.
https://doi.org/10.1111/j.1365-3040.1991.tb01450.x
 
13. Austin J. R., Frost E., Vidi P. A., Kessler F., Staehelin L.A. 2006. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell. 18 : 1693-1703.
https://doi.org/10.1105/tpc.105.039859
 
14. Baoyu Z., Guizhen J., Kezhi B., Tingyun K. 1996. Effect of doubled CO2 concentration on the ultrastructure of chloroplasts from Medicago sativa and Setaria italica. Acta Bot. Sin. 38 : 72-76.
 
15. Baoyu Z., Quan Z., Gui-zhen J., Zhi B., Tingyun K. 2002. Effects of doubled CO2 concentration on ultrastructure, supramolecular architecture and spectral char-acteristics of chloroplasts from wheat. Acta Bot. Sin. 44 : 908-912.
 
16. Baranov S.V., Ananyev G.M., Klimov V.V., Dismukes G.C. 2000. Bicarbonate accelerates assembly of the inorganic core of the water-oxidizing complex in manganese-depleted Photosystem II: A proposed biogeochemical role for atmospheric carbon dioxide in oxygenic photosynthesis. Biochemistry. 39 : 6060-6065.
https://doi.org/10.1021/bi992682c
 
17. Besagni C., Kessler F. 2013. A mechanism implicating plastoglobules in thylakoid disassembly during senescence and nitrogen starvation. Plantа. 237 : 463-470.
https://doi.org/10.1007/s00425-012-1813-9
 
18. Bréhélin C., Kessler F. 2008. The plastoglobule: a bag full of lipid biochemistry tricks. Photochem. Photobiol. 84 : 1388-1394.
https://doi.org/10.1111/j.1751-1097.2008.00459.x
 
19. Bréhélin C., Kessler F., van Wijk K.J. 2007. Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant. Sci. 12 : 260-266.
https://doi.org/10.1016/j.tplants.2007.04.003
 
20. Cave G., Tolley L.C., Strain B.R. 1981. Effect of carbon dioxide enrichment on chlorophyll content, starch con-tent and starch grain structure in Trifolium subterraneum leaves. Physiol. Plant. 51 : 171-174.
https://doi.org/10.1111/j.1399-3054.1981.tb02694.x
 
21. Cheng S.H., Moore B.D., Seemann J.R. 1998. Effects of short- and long-term elevated CO2 on the expression of ribulose-1,5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh. Plant Physiol. 116 : 715-723.
https://doi.org/10.1104/pp.116.2.715
 
22. Demidchik V. 2014. Mechanisms and physiological roles of K+ efflux from root cells. J. Plant Physiol. 171 : 696-707.
https://doi.org/10.1016/j.jplph.2014.01.015
 
23. Farmer E.E., Mueller M.J. 2013. ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Biol. 64 : 429-450.
https://doi.org/10.1146/annurev-arplant-050312-120132
 
24. Ferris R., Sabatti M., Miglietta F., Mills R.F., Taylor G. 2001. Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell ex-pansion and production. Plant Cell Environ. 24 : 305-315.
https://doi.org/10.1046/j.1365-3040.2001.00684.x
 
25. Fristedt R., Willig A., Granath P., Crevecoeur M., Rochaix J.D., Vener A.V. 2009. Phosphorylation of pho-tosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. Plant Cell. 21 : 3950-3964.
https://doi.org/10.1105/tpc.109.069435
 
26. Goral T.K., Johnson M.P., Brain A.P., Kirchhoff H., Ruban A.V., Mullineaux C.W. 2010. Visualizing the mobility and distribution of chlorophyll proteins in higher plant thylakoid membranes: effects of photoinhibi-tion and protein phosphorylation. Plant J. 62 : 948-959.
https://doi.org/10.1111/j.1365-313X.2010.04207.x
 
27. Griffin K.L., Anderson O.R., Gastrich M.D., Lewis J.D., Lin G., Schuster W., Seemann J.R., Tissue D.T., Turnbull M.H., Whitehead D. 2001. Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proc. Natl Acad. Sci. USA. 98 : 2473-2478.
https://doi.org/10.1073/pnas.041620898
 
28. Herbstová M., Tietz S., Kinzel C., Turkina M.V., Kirchhoff H. 2012. Architectural switch in plant photosynthetic membranes induced by light stress. Proc. Natl Acad. Sci. USA. 109 : 20130-20135.
https://doi.org/10.1073/pnas.1214265109
 
29. Kato Y., Sakamoto W. 2009. Protein quality control in chloroplasts: a current model of D1 protein degradation in the photosystem II repair cycle. J. Biochem. 146 : 463-469.
https://doi.org/10.1093/jb/mvp073
 
30. Kirchhoff H., Hall C., Wood M., Herbstová M., Tsabari O., Nevo R., Charuvi D., Shimoni E., Reich Z. 2011. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl Acad. Sci. USA. 108 : 20248-20253.
https://doi.org/10.1073/pnas.1104141109
 
31. Klimov V.V., Baranov S.V. 2001. Bicarbonate requirement for the water-oxidizing complex of photosystem II. Biochim. Biophys. Acta. 1503 : 187-196.
https://doi.org/10.1016/S0005-2728(00)00222-X
 
32. Klimov V.V., Hulsebosch R.J., Allakhverdiev S.I., Wincencjusz H., van Gorkom H.J., Hoff A.J. Bicarbonate may be required for ligation of manganese in the oxygen-evolving complex of Photosystem II. Biochemistry. 1997. 36 : 16277-16281.
https://doi.org/10.1021/bi9717688
 
33. Komenda J., Sobotka R., Nixon P.J. 2012. Assembling and maintaining the photosystem II complex in chloro-plasts and cyanobacteria. Curr. Opin. Plant Biol. 15 : 245-251.
https://doi.org/10.1016/j.pbi.2012.01.017
 
34. Kutіk J., Nátr L., Demmers-Derks H.H., Lawlor D.W. 1995. Chloroplast ultrastructure of sugar beet (Beta vulgaris L.) cultivated in normal and elevated CO2 concentrations with two contrasted nitrogen supplies. J. Exp. Bot. 46 : 1797-1802.
https://doi.org/10.1093/jxb/46.12.1797
 
35. Norby R.J., Wullschleger S.D., Gunderson C.A., Johnson D.W., Ceulemans R. 1999. Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ. 22 : 683-714.
https://doi.org/10.1046/j.1365-3040.1999.00391.x
 
36. Oksanen E., Sober J., Karnosky D.F. 2001.Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the aspen FACE experiment. Environ. Pollut. 115 : 437-446.
https://doi.org/10.1016/S0269-7491(01)00233-0
 
37. Pennanen A., Kemppi V., Lawlor D., Pehu E. 1993. Effects of elevated CO2 on photosynthesis, biomass production and chloroplast thylakoid structure of crop plants. Curr. Topics Plant Physiol. 8 : 185-192.
 
38. Puthiyaveetil S., Tsabari S., Lowry T., Lenhert S., Lewis R.R., Reich Z., Kirchhoff H. 2014. Compartmentalization of the protein repair machinery in photosynthetic membranes. Proc. Natl Acad. Sci. USA. 111 : 15839-15844.
https://doi.org/10.1073/pnas.1413739111
 
39. Rottet S., Besagni C., Kessler F. 2015. The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta. 1847 : 889-899.
https://doi.org/10.1016/j.bbabio.2015.02.002
 
40. Rottet S., Devillers J., Glauser G., Douet V., Besagni C., Kessler F. 2016. Identification of plastoglobules as a site of carotenoid cleavage. Front. Plant Sci. 7 : 1855.
https://doi.org/10.3389/fpls.2016.01855
 
41. Saldanha C.W., Otoni C.G., Rocha D.I., Cavatte P.C., Detmann K.D.S.C., Tanaka F.A.O., Dias L.L.C., DaMatta F.M., Otoni W.C. 2014. CO2-enriched atmos-phere and supporting material impact the growth, morphophysiology and ultrastructure of in vitro Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen] plantlets. Plant Cell Tiss. Org. Cult. 118 : 87-99.
https://doi.org/10.1007/s11240-014-0464-x
 
42. Sharma N., Sinha P.G., Bhatnagar A.K. 2014.Effect of elevated [CO2] on cell structure and function in seed plants. Climate Change Envir. Sustain. 2 : 69-104.
https://doi.org/10.5958/2320-642X.2014.00001.5
 
43. Shutova T., Kenneweg H., Buchta J., Nikitina J., Ter-entyev V., Chernyshov S., Andersson B., Allakhver-diev S. I., Klimov V. V., Dau H., Junge W., Samuelsson G. 2008. The photosystem II-associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal. EMBO J. 27 : 782-791.
https://doi.org/10.1038/emboj.2008.12
 
44. Sinha P.G., Kapoor R., Uprety D.C., Bhatnagar A.K. 2009. Impact of elevated CO2 concentration on ultrastruc-ture of pericarp and composition of grain in three Triticum species of different ploidy levels. Environ. Exp. Bot. 66 : 451-456.
https://doi.org/10.1016/j.envexpbot.2009.04.006
 
45. Spicher L., Kessler F. 2015. Unexpected roles of plastoglobules (plastid lipid droplets) in vitamin K1 and E metabolism. Curr. Opin. Plant Biol. 25 : 123-129.
https://doi.org/10.1016/j.pbi.2015.05.005
 
46. Stemler A. J. 1997. The case for chloroplast thylakoid carbonic anhydrase. Physiol. Plant. 99 : 348-353.
https://doi.org/10.1034/j.1399-3054.1997.990220.x
 
47. Teng N., Wang J., Chen T., Wu X., Wang Y., Lin J. 2006.Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol. 172 : 92-103.
https://doi.org/10.1111/j.1469-8137.2006.01818.x
 
48. Tikkanen M., Nurmi M., Suorsa M., Danielsson R., Mamedov F., Styring S., Aro E.M. 2008. Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. Biochim. Biophys. Acta. 1777 : 425-432.
https://doi.org/10.1016/j.bbabio.2008.02.001
 
49. Tipping C., Murray D.R. 1999. Effects of elevated atmospheric CO2 concentration on leaf anatomy and morphology in Panicum species representing different photosynthetic modes. Int. J. Plant Sci. 160 : 1063-1073
https://doi.org/10.1086/314201
 
50. Tsabari O., Nevo R., Meir S., Carrillo L.R., Kramer D.M., Reich Z. 2015.Differential effects of ambient or diminished CO2 and O2 levels on thylakoid mem-brane structure in light-stressed plants. Plant J. 81 : 884-894.
https://doi.org/10.1111/tpj.12774
 
51. Utriainen J., Janhunen S., Helmisaari H.S., Holopainen T. 2000. Biomass allocation, needle structural characteristics and nutrient composition in Scots pine seedlings exposed to elevated CO2 and O3 concentrations. Trees. 14 : 475-484.
https://doi.org/10.1007/s004680000062
 
52. van Rensen J. J. S., Xu C., Govindjee. 1999. Role of bicarbonate in Photosystem II. Physiol. Plant. 105 : 585-592.
https://doi.org/10.1034/j.1399-3054.1999.105326.x
 
53. Velikova V., Tsonev T., Barta C., Centritto M., Koleva D., Stefanova M., Busheva M., Loreto F. 2009. BVOC emissions, photosynthetic characteristics and changes in chloroplast ultrastructure of Platanus orientalis L. exposed to elevated CO2 and high tem-perature. Environ. Pollut. 157 : 2629-2637.
https://doi.org/10.1016/j.envpol.2009.05.007
 
54. Woodward F.I., Thompson G.B., McKee I.F. 1991. The effects of elevated concentrations of carbon dioxide on in-dividual plants, populations, communities and ecosystems. Ann. Bot. 67 : 23-38.
https://doi.org/10.1093/oxfordjournals.aob.a088206
 
55. Xu C.Y., Salih A., Ghannoum O., Tissue D.T. 2012. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature. J. Exp. Bot. 63 : 5829-5841.
https://doi.org/10.1093/jxb/ers231
 
56. Yamamoto Y., Aminaka R., Yoshioka M., Khatoon M., Komayama K. 2008. Quality control of photosystem II: impact of light and heat stresses. Photosynth. Res. 98 : 589-608.
https://doi.org/10.1007/s11120-008-9372-4
 
57. Yelle S., Beeson R.C., Trudel M.J. Gosselin A. 1989. Acclimation of two tomato species to high atmospheric CO2. I. Sugar and starch concentrations. Plant Physiol. 90 : 1465-1472.
https://doi.org/10.1104/pp.90.4.1465
 
58. Yoshioka-Nishimura M., Nanba D., Takaki T., Ohba C., Tsumura N., Morita N., Sakamoto H., Murata K., Yamamoto Y. 2014. Quality control of photosystem II: direct imaging of the changes in the thylakoid structure and distribution of FtsH proteases in spinach chloroplasts under light stress. Plant Cell Physiol. 55 : 1255-1265.
https://doi.org/10.1093/pcp/pcu079
 
59. Zhang F., Wang Y., Huang Z., Zhu X., Zhang F., Chen F., Fang W. Teng N. 2012. Effects of CO2 enrich-ment on growth and development of Impatiens hawkeri. Sci. World J. Article ID 601263 : 1-9.
https://doi.org/10.1100/2012/601263