Вісн. Харків. нац. аграрн. ун-ту. Сер. Біологія, 2017, вип. 1 (40), с. 9-20


https://doi.org/10.35550/vbio2017.01.009




АКТИВНІ ФОРМИ КИСНЮ І АЗОТУ – МОЖЛИВІ МЕДІАТОРИ СИСТЕМНОЇ СТІЙКОСТІ БОБОВИХ ЗА ДІЇ РИЗОБІАЛЬНОЇ ІНФЕКЦІЇ


А. К. Глянько, А. А. Іщенко

Федеральна державна бюджетна установа науки
«Сибірський інститут фізіології і біохімії рослин»
Сибірського відділення Російської академії наук
(Іркутськ, Росія)
E-mail:
akglyanko@sifibr.irk.ru


Узагальнено дані про участь активних форм кисню (АФК) і азоту (АФА) у процесах життєдіяльності рослин. Особлива увага приділена їх фізіологічній ролі при мутуалістичній взаємодії бобових рослин (Fabaceae) і бульбочкових бактерій (Rhizobiaceae). Наголошується, що АФК і АФА – ключові метаболіти при стресових впливах на рослини. Для О2•–, Н2О2, NO і Ca2+ характерно хвильове поширення як системного сигналу на далекі дистанції. Особливу роль при цьому відіграють мембранна НАДФН-оксидаза як генератор АФК і NO та Ca2+, що впливають на її функціональну активність. Охарактеризований оксид азоту як багатофункціональна сигнальна молекула. Підкреслюється, що у рослин, на відміну від тварин організмів, існують множинні шляхи синтезу NO. Звертається увага на схожість механізмів стійкості рослин до інвазії патогенних бактерій і ризобій на початкових стадіях їх проникнення. При впливі на рослини як патогенів, так і симбіотичних бактерій активується НАДФН-оксидаза. Розглянуто залежність формування бобово-ризобіального симбіозу від Н2О2 і NO. Висловлюється припущення, що співвідношення в клітині NO, O2•–, H2O2 та ONOO визначає надчутливу реакцію клітини за дії екстремальних факторів на рослину як при патогенезі, так і при симбіотичній взаємодії. Наводяться схеми взаємозв'язку сигнальних молекул та імунних реакцій у інфікованої ризобіями бобової рослини.


Ключові слова: Rhizobium, активні форми кисню (АФК) і азоту (АФА), сигнальні посередники (O2•–, H2O2, NO, Ca2+), бобово-ризобіальний симбіоз

 


ЛІТЕРАТУРА


1. Vasil'eva G.G., Mironova N.V., Glyan'ko A.K., Shepot'ko L.N. 2001.Superoxide radical generation in pea seedlings upon inoculation with nitrogen-fixing bacteria of different compatibility. Sel'skokhozyaistvennaya biologija. 3 : 79-83.
 
2. Vasil'eva G.G., Glyan'ko A.K., Mironova N.V. 2005. Hydrogen peroxide content and catalase activity on inoculation with root nodule bacteria of pea seedlings with different ability for nodulation. Appl. Biochem.Microbiol. 41 (6) : 547-550.
https://doi.org/10.1007/s10438-005-0099-0
 
3. Vasil'eva G.G., Glyan'ko A.K., Mironova N.V., Putilina T.E., Luzova G.B. 2007. Active oxygen species in pea seedlings during the interactions with symbiotic and pathogenic microorganisms. Appl. Biochem. Microbiol. 43 (2) : 217-221.
https://doi.org/10.1134/S0003683807020160
 
4. Glyan'ko A.K., Makarova L.E., Vasil'eva G.G., Mironova N.V. 2005. Possible involvement of hydrogen peroxide and salicylic acid in the legume-rhizobium symbiosis. Biology Bulletin. 32 (3) : 245-249.
https://doi.org/10.1007/s10525-005-0096-0
 
5. Glyan'ko A.K., Akimova G.P., Sokolova M.G., Makarova L.E., Vasil'eva G.G. 2007. The defense and regulatory mechanisms during development of legume-Rhizobium symbiosis. Appl. Biochem. Microbiol. 43 (3) : 260-267.
https://doi.org/10.1134/S0003683807030052
 
6. Glyan'ko A.K., Vasil'eva G.G. 2010. Reactive oxygen and nitrogen species in legume-rhizobial symbiosis: A review. Appl. Biochem. Microbiol. 46 (1) : 15-22.
https://doi.org/10.1134/S0003683810010023
 
7. Glyan'ko A.K., Ischenko A.A. 2010. Structural and functional characteristics of plant NADPH oxidase: A review. Appl. Biochem. Microbiol. 46 (5) : 463-471.
https://doi.org/10.1134/S0003683810050017
 
8. Glyan'ko A.K. 2014. Significance of NOD factors Rhizobium in induction of signaling systems at formation of legume-rhizobia symbiosis. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (33) : 6-14.
 
9. Glyan'ko A.K., Ischenko A.A. 2014. Rhythmical changes of a level nitric oxide (NO) in roots etiolated seedlings of pea (Pisum sativum L.) and influence of exogenous calcium. J. Stress Physiol. Biochem. 10 (4) : 56-66.
 
10. Glyan'ko A.K. 2015. Signaling systems of rhizobia (Rhizobiaceae) and leguminous plants (Fabaceae) upon the formation of a legume-rhizobium symbiosis (Review). Appl. Biochem. Microbiol. 51 (5) : 494-504.
https://doi.org/10.1134/S0003683815050063
 
11. Glyan'ko A.K. 2015. 2016. Defensive mechanisms of rhizobia-infected legume plants. Visn. Hark. nac. agrar. univ., Ser. Biol. 1 (37) : 63-77.
 
12. Glyan'ko A.K., Ischenko A.A. 2017. Immunity of a leguminous plant infected by nodular bacteria Rhizobium spp. F.: Review Appl. Biochem. Microbiol. 53(2) : 136-145.
https://doi.org/10.1134/S0003683817020107
 
13. Karpets Yu.V., Kolupaev Yu.E., Vayner A.A. 2015. Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance. Russ. J. Plant Physiol. 62 (1) : 65-70.
https://doi.org/10.1134/S1021443714060090
 
14. Kolupaev Yu.Ye., Karpets Yu.V. 2009. Salicylic acid and plants resistance to abiotic stressors. Visn. Hark. nac. agrar. univ., Ser. Biol. 2 (17) : 19-39.
 
15. Kolupaev Yu.E., Karpets Yu.V. 2014. Reactive oxygen species and stress signaling in plants. Ukr. Biochem. J. 86 (4) : 18-35.
https://doi.org/10.15407/ubj86.04.018
 
16. Krasylenko Yu.A., Yemets A.I., Blume Ya.B. 2010. Functional role of nitric oxide in plants. Russ. J. Plant Physiol. 57 (4) : 451-461.
https://doi.org/10.1134/S1021443710040011
 
17. Merzlyak M.N. 1989. Activated oxygen and oxidative processes in plant cell membranes. In: Results of science and technology. Ser. Plant Physiology. Vol. 6. Moscow : 166 p.
 
18. Polesskaya O.G. 2007. Plant cell and reactive oxygen species. Moscow : 140 p.
 
19. Reutov V.P. 1995. Nitric oxide cycle in animal organisms. Uspekhi Sovrem. Biologii. 115 (2) : 189-228.
 
20. Shumnyi V.K., Sidorova K.K. Klevenskaya I.L., Rodynyuk I.S., Maistrenko G.G., Gordienko N.Ya., Smetanin N.I., Avetisov L.A. 1991. Biological nitrogen fixation. Novosibirsk : 108-110.
 
21. Barroso J.B., Valderrama R., Corpas F.J. 2013.Immuno-localization of S-nitrosoglutathione, S-nitrosoglutathione reductase and tyrosine nitration in pea leaf organelles. Acta Physiol. Plant. 35 : 2635-2640.
https://doi.org/10.1007/s11738-013-1291-0
 
22. Baron C., Zambryski P.C. 1995.The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu. Rev. Genet. 29 : 107-129.
https://doi.org/10.1146/annurev.ge.29.120195.000543
 
23. Baptista P., Martins A., Pais M.S., Tavares R.M., Lino-Neto T. 2007. Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment be-tween Castanea sativa and Pisolithus tinctorius. Mycorrhiza. 17 : 185-193.
https://doi.org/10.1007/s00572-006-0091-4
 
24. Baxter A., Mittler R., Suzuki N. 2014. ROS as key players in plant stress signaling. J. Exp. Bot. 65 : 1229-1240.
https://doi.org/10.1093/jxb/ert375
 
25. Bellin D., Asai S., Delledonne M., Yoshioka H. 2013. Nitric oxide as a mediator for defense responses. Mol. Plant Microbe Interac. 26 : 271-277.
https://doi.org/10.1094/MPMI-09-12-0214-CR
 
26. Besson-Bard A., Pugin A., Wendehenne D. 2008. New insights into nitric oxide signaling in plants. Annu. Rev. Plant Biol. 59 : 21-39.
https://doi.org/10.1146/annurev.arplant.59.032607.092830
 
27. Blilou I., Ocampo J., Garcia-Garrido J. 1999. Resistance of pea root to endomycorrhizal fungus or Rhizobium correlates with enganced levels of endogenous sali-cylic acid. J. Exp. Bot. 50 : 1663-1668.
https://doi.org/10.1093/jexbot/50.340.1663
 
28. Bolwell G. 1999. Role of active oxygen species and NO in plant defense responses. Cur. Opin. Plant Biol. 2 : 287-294.
https://doi.org/10.1016/S1369-5266(99)80051-X
 
29. Bueno P., Soto M.J., Rodriguez-Rosales M.P., Sanjuan J., Olivares J., Donaire J.P. 2001. Timecourse of lipoxygenase, antioxidant enzyme activities and H2O2 accumulation during the early stages of Rhizobium-legume symbiosis. New Phytol. 152 : 91-96.
https://doi.org/10.1046/j.0028-646x.2001.00246.x
 
30. Catford J.G., Staehelin C., Lerat S., ves Piche Y., Vierheilig H. 2003. Supression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after preinoculation and treatment with Nod factors. J. Exp. Bot. 54 : 1481-1487.
https://doi.org/10.1093/jxb/erg156
 
31. Corpas F.J., Palma J.M., del Rio L.A., Barroso J.B. 2009. Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol. 184 : 9-14.
https://doi.org/10.1111/j.1469-8137.2009.02989.x
 
32. Corpas F.J., del Rio L.A., Barroso J.B. 2013. Protein tyrosine nitration in higher plants under natural and stress conditions. Front. Plant Sci. 4 : 29. doi: 10.3389/fpls.2013.00029.
https://doi.org/10.3389/fpls.2013.00029
 
33. Crawford N.M. 2006. Mechanisms for nitric oxide synthesis in plants. J. Exp. Bot. 57 : 471-478.
https://doi.org/10.1093/jxb/erj050
 
34. Delledonne М., Zeier J., Marocco A., Lamb C. 2001.Signal interactions between nitric oxide and reactive oxy-gen intermediates in the plant hypersensitive dis-ease resistance response. Proc. Natl. Acad. Sci. USA. 98 : 13454-13459.
https://doi.org/10.1073/pnas.231178298
 
35. Del Rio L.A. 2015. ROS and RNS in plant physiology: an overview. J. Exp. Bot. 66 : 2827-2837.
https://doi.org/10.1093/jxb/erv099
 
36. Djordjevic M.A., Gabriet D.W., Rolfe B.G. 1987. Rhizobium - the refined parasite of legumes. Annu. Rev. Phytopathol. 25 : 145-168.
https://doi.org/10.1146/annurev.py.25.090187.001045
 
37. Deakin W.J., Broughton W.J. 2009. Symbiotic use of phatogenic strategies: rhizobial protein secretion systems. Nature Rev. Microbiol. 7 : 312-320.
https://doi.org/10.1038/nrmicro2091
 
38. Ferrarini A., de Stefano M., Baudouin E., Pucciariello C., Polverari A., Puppo A., Delledonne M. 2008. Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions. Mol. Plant Microbe Interact. 21 : 781-790.
https://doi.org/10.1094/MPMI-21-6-0781
 
39. Fewson C.A., Nicholas D.J.D. 1960. Utilization of nitric oxide by microorganisms and higher plants. Nature. 188 : 794-796.
https://doi.org/10.1038/188794a0
 
40. Foyer C.H., Noctor G. 2003. Redox sensing and signaling associated with reactive oxygen in chloroplasts, perox-isomes and mitochondria. Physiol. Plant. 119 : 355-364.
https://doi.org/10.1034/j.1399-3054.2003.00223.x
 
41. Garcia-Garrido J.M., Ocampo J.A. 2002. Regulation of the plant defense response in arbuscular-mycorrhizal symbiosis. J. Exp. Bot. 53 : 1377-1386.
https://doi.org/10.1093/jexbot/53.373.1377
 
42. Garcia-Mata C., Lamattina L. 2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 126 : 1196-1204.
https://doi.org/10.1104/pp.126.3.1196
 
43. Garcia-Mata C., Lamattina L. 2003. Abscisic acid, nitric oxide and stomatal closure - is nitrate reductase one of the missing links? Trends Plant Sci. 8 : 20-26.
https://doi.org/10.1016/S1360-1385(02)00009-2
 
44. Gilroy S., Bialasek M., Suzuki N., Gorecka M., Devireddy A.R., Karpinski S., Mittler R. 2016. ROS, calcium, and electric signals: key mediators of rapid systemic sig-naling in plants. Plant Physiol. 171 : 1606-1615.
https://doi.org/10.1104/pp.16.00434
 
45. Glyan'ko A.K., Mitanova N.V., Stepanov A.V. 2010.The physiological role of nitric oxide (NO) in plants. Visn. Hark. nac. agrar. univ., Ser. Biol. 1 (19) : 6-20.
 
46. Glyan'ko A.K. 2013. Initiation of nitric oxide (NO) synthesis in roots of etiolated seedlings of pea (Pisum sativum L.) under the influence of nitrogen-containing com-pounds. Biochemistry (Mosc.). 78 : 471-476.
https://doi.org/10.1134/S0006297913050052
 
47. Gourion B., Berrabah F., Ratet P., Stacey G. 2015. Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci. 20 : 186-194.
https://doi.org/10.1016/j.tplants.2014.11.008
 
48. Guo F.Q., Okamoto M., Crawford N.M. 2003. Identification of a plant nitric oxide synthase gene involved in hor-monal signaling . Science. 302 (5642) : 100-103.
https://doi.org/10.1126/science.1086770
 
49. Heil M., Ton J. 2008. Long-distance signalling in plant defence. Trends Plant Sci. 13 : 264-272.
https://doi.org/10.1016/j.tplants.2008.03.005
 
50. Hichri I., Boscari A., Castella C., Rovere M., Puppo A., Brouquisse R. 2015.Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. J. Exp. Bot. 66 : 2877-2887.
https://doi.org/10.1093/jxb/erv051
 
51. Kachroo A., Robin G.P. 2013.Systemic signaling during plant defense. Curr. Opin. Plant Biol. 16 : 527-533.
https://doi.org/10.1016/j.pbi.2013.06.019
 
52. Kubienova L., Ticha T., Jahnova J., Luhova L., Mieslerova B., Pettrivalsky M. 2014. Effect of abiotic stress stimuli on S-nitrosoglutathione reductase in plants. Planta. 239 : 139-146.
https://doi.org/10.1007/s00425-013-1970-5
 
53. Lohar D.P., Sharopova N., Endre G., Penuela S., Samas D., Town C.D., Silverstein K.A.T., Vanden-Bosch K.A. 2006. Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol. 140 : 221-234.
https://doi.org/10.1104/pp.105.070326
 
54. Lohar D.P., Haridas S., Gantt J.S., Vanden-Bosch K.A. 2007. A transient decrease in reactive oxygen species in roots leads to root hair deformation in the legume-rhizobia symbiosis. New Phytol. 173 : 39-49.
https://doi.org/10.1111/j.1469-8137.2006.01901.x
 
55. Liu Y., Wang R., Zhang P., Chen Q., Luo I., Zhu Y., Xu J. 2016. The nitrification inhibitor methyl 3-(4-hydroxyphenyl) propionate modulates root development by interfering with auxin signaling via the NO/ROS pathway in Arabidopsis. Plant Physiol. 171 : 1686-1703.
https://doi.org/10.1104/pp.16.00670
 
56. Martinez-Abarka F., Herrera-Cervera J.A., Bueno P., Sanjuan J., Bisseling T., Olivares J. 1998. Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Mol. Plant Microbe Interac. 11 : 153-155.
https://doi.org/10.1094/MPMI.1998.11.2.153
 
57. Montiel J., Arthikala M.K., Cardenas L., Quinto C. 2016. Legume NADPH oxidase have crucial roles at different stages of nodulation. Inter. J. Mol. Sci. 17 (5) : 680. doi: 10.3390/ijms17050680
https://doi.org/10.3390/ijms17050680
 
58. Meyer C., Lea U.S., Provan F., Kaiser W.M., Lillo C. 2005. Is nitrate reductase a major player in the plant NO (nitric oxide) game? Photosynth. Res. 83 : 181-189.
https://doi.org/10.1007/s11120-004-3548-3
 
59. Miller G., Schlauch K., Tam R., Cortes D., Torres M.A., Shulaev V., Dangi J.L., Mittler R. 2009. The plant NADPH oxidase RbohD mediates rapid systemic in response to diverse stimuli. Sci. Signal. 2 (84) : Ra 45.
https://doi.org/10.1126/scisignal.2000448
 
60. Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. 2011. ROS signaling: the new wave? Trends Plant Sci. 16 : 300-309.
https://doi.org/10.1016/j.tplants.2011.03.007
 
61. Mittler R. 2017. ROS are good. Trends Plant Sci. 22 : 11-19.
https://doi.org/10.1016/j.tplants.2016.08.002
 
62. Modolo L.V., Augusto O., Almeida I.M.G., Magalhaes J.R., Salgodo I. 2005. Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in re-sponse to Pseudomonas syringae. FEBS Lett. 579 : 3814-3820.
https://doi.org/10.1016/j.febslet.2005.05.078
 
63. Mur L.A.J., Carver T.W., Prats E. 2006. NO way to live; the various roles of nitric oxide in plant-pathogen interactions. J. Exp. Bot. 57 : 489-505.
https://doi.org/10.1093/jxb/erj052
 
64. Navrot N., Rouhier N., Gelhaye E., Jacquot J.P. 2007. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 129 : 185-195.
https://doi.org/10.1111/j.1399-3054.2006.00777.x
 
65. Neill S.J., Desikan R., Clarke A., Hurst R.D., Hancock J.T. 2002. Hydrogen peroxide and nitric oxide \ as signaling molecules in plants. J. Exp. Bot. 53 : 1237-1247.
https://doi.org/10.1093/jxb/53.372.1237
 
66. Park S.W., Kaimoyo E., Kumar D., Mosher S., Kles-sig D.F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science. 2007. 318 : 113-116.
https://doi.org/10.1126/science.1147113
 
67. Parniske M. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr. Opin. Plant Biol. 2000. 3 : 320-328.
https://doi.org/10.1016/S1369-5266(00)00088-1
 
68. Pauly N., Pucciariello C., Mandon K., Innocenti G., Jamet A., Baudouin E., Herouart D., Frendo P., Puppo A. 2006. Reactive oxygen and nitrogen species and glutathione: key players in the legume-Rhizobium symbiosis. J. Exp. Bot. 57 : 1769-1776.
https://doi.org/10.1093/jxb/erj184
 
69. Pieterse M.J., van Wees S.C.M., van Pelt J.A., Knoester M., Laan R., Gerrits H., Weisbeek P.J., van Loon L.C. 1998. A novel signaling pathway controlling in-duced systemic resistance in Arabidopsis. Plant Cell. 10 : 1571-1580.
https://doi.org/10.1105/tpc.10.9.1571
 
70. Pieterse C.M.J., van Pelt J.A., Ton J., Parchmann S., Mueller M.J.,Buchala J., Metraux J.P., van Loon L.C. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol. Mol. Plant Pathol. 57 (3) : 123-134.
https://doi.org/10.1006/pmpp.2000.0291
 
71. Pii Y., Grimi M., Cremonese G., Spena A., Pandolfini T. 2007. Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol. 7: 21.
https://doi.org/10.1186/1471-2229-7-21
 
72. Plet J., Wasson A., Ariel F., Le Signor C., Baker D., Matthesius U., Crespi M., Frugier F. 2011. MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J. 65 : 622-633.
https://doi.org/10.1111/j.1365-313X.2010.04447.x
 
73. Pourrut B., Perchet G., Silvestre J., Cecchi M., Guiresse M., Pinelli E. 2008. Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J. Plant Physiol. 165 : 571-579.
https://doi.org/10.1016/j.jplph.2007.07.016
 
74. Puppo A., Pauly N., Boscari A., Mandon K., Brouquisse R. 2013. Hydrogen peroxide and nitric oxide: key regulators of the legume - Rhizobium and mycorrhi-zal symbioses. Antioxidants Redox Signal. 18 : 2202-2219.
https://doi.org/10.1089/ars.2012.5136
 
75. Ramu K., Peng H.M., Cook D.R. 2002. Nod factor induction of reactive oxygen species production is correlated with expression of the nodulin gene rip1 in Medicago truncatula. Mol. Plant Microbe Interac. 15 : 522-528.
https://doi.org/10.1094/MPMI.2002.15.6.522
 
76. Romero N., Denicola A., Radi R. 2006. Red blood cells in the metabolism of nitric oxide - derived peroxynitrite. IUBMB Life. 58 : 572-580.
https://doi.org/10.1080/15216540600936549
 
77. Ryals J.A., Neuenschwander U.H., Willits M.G., Moli-na A., Steiner H.Y, Hunt M.D. 1996. Systemic acquired re-sistance. Plant Cell. 8 : 1809-1819.
https://doi.org/10.1105/tpc.8.10.1809
 
78. Schmidt R., Kunkowska A.B., Schippers H.M. 2016. Role of reactive oxygen species during cell expansion in leaves. Plant Physiol. 172 : 2098-2106.
https://doi.org/10.1104/pp.16.00426
 
79. Scheler C., Durner J., Astier J. 2013. Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol. 16 : 534-539.
https://doi.org/10.1016/j.pbi.2013.06.020
 
80. Shimoda Y., Nagata M., Suzuki A., Abe M., Sato S., Kato T., Tabata S., Higashi S., Uchiumi T. 2005. Symbiotic rhizobium and nitric oxide induce of nonsymbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol. 46 : 99-107.
https://doi.org/10.1093/pci/pci001
 
81. Shimoda Y., Shimoda-Sasakura F., Kucho K., Kanamori N., Nagata M., Suzuki A., Abe M., Higashi S., Uchiumi T. 2009. Overexpression of class 1 plant hemo-globin genes enhances symbiotic nitrogen fixation activity between Mesarhizobium loti and Lotus japonicus. Plant J. 57 : 254-263.
https://doi.org/10.1111/j.1365-313X.2008.03689.x
 
82. Soto M.J., Sanjuan J., Olivares J. 2006. Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology. 152 : 3167-3174.
https://doi.org/10.1099/mic.0.29112-0
 
83. Stohr C., Stremlau S. 2006. Formation and possible roles of nitric oxide in plant roots. J. Exp. Bot. 57 : 463-470.
https://doi.org/10.1093/jxb/erj058
 
84. Stacey G., McAlvin C.B., Sung-Yong Kim, Olivares J., Sato M.J. 2006. Effect of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago tranculata. Plant Physiol. 141 : 1473-1481.
https://doi.org/10.1104/pp.106.080986
 
85. Steinhorst L., Kudla J. 2013. Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol. 163 : 471-485.
https://doi.org/10.1104/pp.113.222950
 
86. Tun N.N., Santa-Catarina C., Begum T., Silveira V., Handro W., Floh S.E.I., Scherer G.F.E. 2006. Poliamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedling. Plant Cell Physiol. 47 : 346-354.
https://doi.org/10.1093/pcp/pci252
 
87. Wang Y., Loake G.L. Chu C. 2013. Cross-talk of nitric oxide and reactive oxygen species in plant programmed cell death. Front. Plant Sci. 4 : 314. doi: 10.3389/fpls.2013.00314
https://doi.org/10.3389/fpls.2013.00314
 
88. Wais R.J., Galera C., Oldroyd G., Catoira R., Varma Penmetsa R., Cook D., Denarie J., Long S.R. 2000. Genetic analysis of calcium spiking responses in nodulation mutants of Medicago trancatula. Proc. Natl. Acad. Sci. USA. 97 : 13407-13412.
https://doi.org/10.1073/pnas.230439797
 
89. Walker S.A., Viprey V., Downie J.A. 2000. Dissection of nodu-lation signaling using pea mutants defective for cal-cium spiking induced by Nod factors and chitin oli-gomers. Proc. Natl. Acad. Sci. USA. 97 : 13413-13418.
https://doi.org/10.1073/pnas.230440097
 
90. Wildt J., Kley D., Rockel D., Rockel P., Segschneider H.J. 1997. Emission of NO from several higher plant species. J. Geophys. Res. 102 (D5) : 5919-5928.
https://doi.org/10.1029/96JD02968
 
91. Yamasaki H., Sakihama Y. 2000. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reduc-tase: in vitro evidence for the NR-dependent for-mation of active nitrogen species. FEBS Lett. 468 : 89-92.
https://doi.org/10.1016/S0014-5793(00)01203-5
 
92. Yastreb T.O., Karpets Yu.V., Kolupaev Yu.E., Dmitriev A.P. 2017. Induction of salt tolerance in salicylate-deficient NahG Arabidopsis transformants using the nitric oxide donor. Cytol. Genet. 51 : 134-141.
https://doi.org/10.3103/S0095452717020086
 
93. Yu M., Lamatina L., Spoel S.H., Loake G.J. 2014. Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol. 202 : 1142-1156.
https://doi.org/10.1111/nph.12739
 
94. Yun B.W., Feechan A., Yin M., Saudi N.B., Le Bihan T., Yu M.,Spoel S.H., Loake G.J. 2011. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature. 478 : 264-268. doi: 10.1038/nature10427.
https://doi.org/10.1038/nature10427
 
95. Zaninotto F., La Camera S., Polverari A., Delledonne M. 2006. Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease re-sistance response. Plant Physiol. 141 : 379-383.
https://doi.org/10.1104/pp.106.078857
 
96. Zhao J., Fujita K., Sakai K. 2007.Reactive oxygen species, nitric oxide, and their interactions play different roles in Cupressus lusitanica cell death and phytoa-lexin biosynthesis. New Phytol. 175 : 215-229.
https://doi.org/10.1111/j.1469-8137.2007.02109.x